CHEMICAL
RESEARCH,
DEVELOPMENT &
ENGINEERING
CENTER

CRDEC CR-091

AD-A231 890

DS2 CONTAINER AND WEATHERPROOFING STUDY

David C. Stark R. William Mengel

GENERAL MANAGEMENT ASSOCIATES
Abingdon, MD 21009

This determent has been approved I republican here and said, he do not so a least the field of

December 1990

Aberdeen Proving Ground, Maryland 21010-8423

BEST AVAILABLE COPY

91 2 20

037

Disclaimer

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorizing documents.

Distribution Statement

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson David Hollyway, Suite 1204, Artification, VA 22302-4302, and to the Office of Management and Budget, Paperwork Reduction Project (1074-0-1188), Washington, DC 20503.

Davis Highway, Suite 1204, Arlington, VA 22202-4			
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE 1990 December		D DATES COVERED
	an - 90 Sep		
4. TITLE AND SUBTITLE DS2 Container and Weath	5. FUNDING NUMBERS C-DAAA15-87-D-0021 TA-089		
6. AUTHOR(S)	3 m 112332		j
Stark, David C., and Me			
7. PERFORMING ORGANIZATION NAM	ME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
General Management Asso 21009	CRDEC-CR-091		
9. SPONSORING/MONITORING AGEN	CY NAME(S) AND ADDRESS	(ES)	10. SPONSORING/MONITORING
CDR, CRDEC, ATTN: SMC0 21010-5423		•	AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES		· · · · · · · · · · · · · · · · · · ·	
COR: Richard Forchhei		01) 671-5796	
12a. DISTRIBUTION/AVAILABILITY ST Approved for public re	lease; distribution	n is unlimited.	126. DISTRIBUTION CODE
the state-of-art in ha	he results of a man ainer manufacturing zardous material co prove the shelf lif aminant. Included	g, and weatherproo ontainer weatherpr fe of the containe in this report ar	fing firms to determine cofing. This informa- rs used for contingency
14. SUBJECT TERMS	ainless steel	Fluoropolymers	15. NUMBER OF PAGES
	82		
Weatherproofing Po		Shrink-wraps Solder	16. PRICE CODE
17. SECURITY CLASSIFICATION 18			CATION 20. LIMITATION OF ABSTRACT
OF REPORT UNCLASSIFIED	OF THIS PAGE UNCLASSIFIED	OF ABSTRACT UNCLASSIFIED	ÜL

BLANK

EXECUTIVE SUMMARY

The objective of the "DS2 Container and Weatherproofing Study" is to identify and recommend candidate materials, methods and containers capable of withstanding common DS2 storage conditions. This effort is in support of the U.S. Army's program to identify improved methods for containerization and protection from the environment for DS2 in long-term storage.

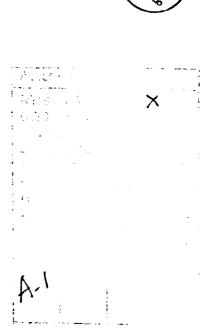
Efforts under this task identified and conducted a preliminary assessment of materials, containers and methods used in industry for handling and storing highly corrosive liquids. Materials and methods for coating and weatherproofing steel containers also have been examined. In accomplishing these reviews nearly 100 private sector firms were surveyed. Firms in hazardous material handling, container manufacturing, and coating and weatherproofing were contacted to determine the state of current technology in these areas.

Key findings in the study are:

- Under current requirements of the Resource Conservation and Recovery Act, the method and times for storage of hazardous materials are limited to 90 days for waste generators and one year for storage and disposal sites. Hence, long-term storage techniques are not addressed.
- Non-burnable hazardous wastes stored in landfills are not contained in a manner that ensures corrosion resistance. Landfills are constructed with impermeable polyethylene liners to prevent contaminants from leaking outside the landfill. These landfills are also designed to drain any liquid leachate into a sump for recovery and incineration. Thus, a certain amount of container seepage over time is viewed as beneficial in reducing the overall hazard of the landfill.
- A range of potential alternatives for improving DS2 containers were developed from the surveys. These include:
 - The use of stainless steel containers
 - Use of cold-rolled steel with an inner liner of selected polymers
 - Use of one of selected polymers
 - Use of shrink-wrap overpack on the container
 - Substitute silver solder for the currently used lead solder

From the study findings, a preliminary range of recommendations has been developed. These recommendations are nominally rank ordered based solely on technical feasibility.

- Package DS2 in stainless steel containers
- Use silver solder for the end closures
- Use a shrink-wrap overpack
- Make a container from a compatible polymer
- Apply an internal polymer liner to the current container


PREFACE

The work described in this report was authorized under Contract No.DAAA15-87-D-0021, Task 089. This work was started in January 1990 and completed in September 1990.

The use of trade names or manufacturers' names in this report does not constitute an official endorsement of any commercial products. This report may not be cited for purposes of advertisement.

Reproduction of this document in whole or in part is prohibited except with permission of the Commander, U.S. Army Chemical Research, Development and Engineering Center, ATTN: SMCCR-SPS-T, Aberdeen Proving Ground, MD 21010-5423. However, the Defense Technical Information Center and the National Technical Information Service are authorized to reproduce the document for U.S. Government purposes.

This report has been approved for release to the public.

BLANK

CONTENTS

			Page
1.	Backgrou	nd	1
2.1	Objective	e, Purpose and Scopeeand Scope	1 1 2
2.2	rurpose (and scope	_
		e for Studyuestionnaire	2 2
		ion of the Address Lists	2
		with Companies	2
-		•	
4.	Results	of the Survey	7
		on of Findings	9
		s Steel	9
		eel Cans	9
		c Containers	10
		ss Composite Containers	11
		Coatings	12
5.6	Solders.	• • • • • • • • • • • • • • • • • • • •	14
6.	Conclusi	ons	15
7.	Recommen	dations	16
Refer	ences		17
Appen	dix A.	Companies Contacted	19
Appen	dix B.	Extract from 49 CFR 173 and Packaging Instructions 809 and 813	31
Appen	dix C.	Extract of Information on Polyetherether-	·
		ketone Provided by ICI Advanced Materials/LNI Engineering Plastics, Exton, PA	
Appen	dix D.	Information on Polychlorotrifluoroethylene Provided by Allied Signal	47
Appen	dix E.	Information on Polyvinylidene Fluoride Provided by Soltex Polymer	53
Appen	dix F.	Properties of Plastics	67
Appen	dix G.	Extract from Marine Corrosion: Causes and Prevention (c) J. Wiley and Sons, New York, 1975, pp. 302-305	71
Appen	dix H.	Approximate Container Costs for Selected Container Materials	73

LIST OF TABLES AND FIGURES

Tabl	es	Page
1. 2. 3.	Typical Properties - Unreinforced Resin Casts Melting Point Solders	14
Figu	re	
1.	Hazardous/Corrosive Material Container Questionnaire	3

1. BACKGROUND

DS2 is the standard chemical agent decontaminant for the U.S. Army. DS2 is a homogeneous mixture of Diethylenetriamine (69-71%), sodium hydroxide (1.9-2.1%) and ethylene glycol monomethylether (methyl cellosolve) (remainder). This mixture is corrosive to some materials, and can cause softening of plastics and paints. DS2 is packed in steel containers of three sizes (Ref. 1):

- 1-1/3 quart refills for the M11 Decontaminating Apparatus
- 14-liter (3.7 gallons) punch-seal containers for the M13 Decontaminating Apparatus
- 5-gallon pail for bulk decontamination operations

There have been a number of reports from depots and field storage sites of leaking and/or corroded DS2 containers. A reasonable initial assumption would be that the caustic contents were finding vulnerable points in the container and corroding from the inside out. However, previous investigations have determined that the leakage is more often caused by prolonged environmental exposure of the welds or solder closures at the lap joints and end caps of the containers.

The result of this corrosion on the container is an eventual loss of seal integrity, which allows air to enter the can, and DS2 to subsequently seep out. The contents of the container may polymerize, resulting in a useless gel. Seepage of the contents may present an environmental and health hazard because of the corrosive and toxic nature of DS2. In either case, the container and its contents must be properly disposed of and replaced, thereby increasing the life cycle cost of maintaining the necessary wartime stockpile levels of DS2 material.

2. OBJECTIVE, PURPOSE AND SCOPE

2.1 OBJECTIVE

The overall objective of this task is to identify and recommend candidate materials, methods and containers able to withstand common DS2 storage conditions. In support of this objective, the task requires the determination of materials, containers and methods used in the hazardous waste industry for handling and storing highly corrosive liquids. In direct response to current DS2 packaging, the study is also to determine materials and methods used in industry for coating and weatherproofing steel containers.

2.2 PURPOSE AND SCOPE

The purpose of the study is to develop data to support the U.S. Army in defining alternative approaches to the packaging of DS2 in order to eliminate the causes of current container leakage problems. Through this study, the Government will be able to identify and solicit information from private sector companies which might contribute to the updating of the DS2 packaging technical data package (TDP).

The scope of the task includes contacting hazardous materials, plastics, and weatherproofing firms to obtain information on containerization and weatherproofing materials and methods. At least 50 companies will be surveyed, with no geographic restrictions. Companies will represent a range of sizes, based on annual revenues.

3. PROCEDURE FOR STUDY

3.1 SURVEY QUESTIONNAIRE

The first portion of the task was to develop a questionnaire for use as a framework for discussions. The questionnaire was submitted to the Government for comments and approval. The final questionnaire is presented as Figure 1.

3.2 COMPILATION OF THE ADDRESS LISTS

Concurrent with questionnaire preparation and Government approval, the task team compiled a list of 99 addresses of companies identified as hazardous waste handlers, container manufacturers, or anti-corrosion coating suppliers. The task team used the Thomas Business Register, 1989 edition, as the primary source, and extracted the companies deemed most likely, from the limited descriptions of capabilities, to be in the field of interest. From an initial list of more than 500 companies, the final mailing list of 99 companies was complied. A list of the companies contacted is presented in Appendix A.

3.3 CONTACTS WITH COMPANIES

Each of these companies was mailed a survey questionnaire, and then was contacted by telephone. The initial telephone contact served to establish a point-of-contact (POC) by name and as a means to schedule a follow-up call for further information gathering after the POC had a chance to review the survey questionnaire. Subsequent contact(s) were used to complete the data gathering task.

I. General Information

- A. Corporate Identification
 - 1. Name of Company
 - Address of Company Headquarters
- B. Corporate Description
 - 1. Approximate Annual Gross Sales
 - 2. Number of Personnel
 - 3. Has your company produced containers conforming to Government specifications?
 - 4. If your company purchases the containers used, rather than making your own, please list the suppliers.

II. Containers

- 1. Does your firm handle corrosive/alkaline hazardous wastes/materials? What specific materials do you handle?
- 2. If yes, what Standing Operating Procedures or regulations are followed in your handling and disposal?
- 3. What types of containers do you use for corrosive wastes?
- 4. What material(s) are they made of, what gauge/thickness is the material, and what sizes do the containers come in?
- 5. By what methods/materials are the containers fabricated and sealed?
- 6. a. How long are the materials stored in the container?
 - b. What effects do the corrosive materials have on the containers?

Figure 1

- 7. What are the environmental conditions under which the materials are stored?
- 8. Are the filled and sealed containers readily transportable? Can they be subjected to rough handling? (IAW Military Specifications). With which military specifications, if any, do they comply?
- 9. What are examples of materials stored in these containers?
- 10. What type(s) of labeling do you use on your containers? How is it applied (printed labels, stenciling, silk screening, etc.)?
- 11. Would you prefer to use another method to label the containers? If so, what type?
- 12. Are the containers you presently use considered superior to those generally used in industry today?
- 13. If you do not manufacture your own containers, skip to Section IV.

III. Container Manufacturers

- 1. Do you make containers from carbon steel? What gauge carbon steel? What are the available capacities?
- 2. How do you seal your carbon steel containers? If welded/soldered, how many welds/solders?
- 3. What other materials would be appropriate for DS2 containers?
- 4. Can you make containers using only two pieces (container and lid) suitable for holding DS2?
- 5. Do you apply corrosion resistant coatings to your containers? If so, what types?
- 6. Are test samples available? Are test reports available?
- 7. Would you be willing to fabricate containers for the U.S. Government? Do you have any reservations about dealing with the Federal Government?

- 8. Are any of your processes/materials proprietary in nature?
- 9. Can your company support a production rate of 100,000 cans per year? What is the approximate cost per can at this production rate?

IV. Weatherproofing

- 1. What type of materials/polymer coatings are used by your company to weatherproof/preserve products in metal containers (e.g., spray coatings, dip coatings, barrier bags, encapsulation)?
- 2. Is your weatherproofing method/material transparent?
- 3. What thickness is customarily used?
- 4. Is your weatherproofing method/material easily applied? What equipment is required? Under what conditions can it be applied?
- 5. Can your company support weatherproofing of containers at the rate of 100,000 cans per year? What is the approximate coating cost per square foot at this rate of production?
- 6. Are test samples, products, or containers available?
 Are any test reports available?
- 7. Can you apply your weatherproofing method/material to containers which we provide? Is there a set fee for such work?
- 8. Under what conditions can your weatherproofing method/material be used?
- 9. Is your weatherproofing method/material compatible with Chemical Agent Resistant Coating (CARC) per MIL-STD-171? Is it compatible with polyurethane based coating systems in general? Is it compatible with alkyd-based coatings?
- 10. How well do the labels placed on the containers hold up under weathering/storage?
- 11. Are the materials used to weatherproof in and of themselves considered hazardous material/waste?

- 12. Do the weatherproofing materials present any unusual safety or health hazards/concerns?
- 13. Are there any lessons learned about storage of corrosive/alkali based hazardous wastes/materials which you can recount?

V	7. (Gene	eral	. Commo	eni	ts

Figure 1 (Continued)

4. RESULTS OF THE SURVEY

Due to the contractual requirement to contact "not less than 50 firms", the task team deliberately canvassed more firms than required. Prior experience with this type of survey indicated that the typical response rate would be about 60% of the firms initially contacted. Of the 99 firms selected for initial contacts, 50 were eventually dropped from further consideration, for a variety of reasons.

More than half of the companies selected disqualified themselves, stating that their product line did not match the DS2 container requirements or that they had no desire to deal with Government contracts. The following lists the various reasons given for not participating in the survey:

- Product line does not match the requirements for DS2 containers (too large, too small, wrong materials) (19 firms)
- Firms improperly identified from the Thomas Register (warehouses for containers, nuclear waste container manufacturers, air pollution mitigators) (5 firms)
- Businesses with no desire to accept Government or military contracts (2 firms)
- Dropped hazardous waste handling line of business (1 firm)
- Gone out of business, no telephone number listed, or moved leaving no forwarding address (9 firms)
- Did not respond to repeated contacts (14 firms)

Many companies contacted informed the task team that they would simply use containers which conformed to the appropriate Department of Transportation (DOT) transportability codes for the class of materials into which DS2 falls. From the Material Safety Data Sheet (MSDS), DS2 was identified as an Alkaline Corrosive Liquid, N.O.S., which is covered by 49 Code of Federal Regulations (CFR) 173.249. The task team subsequently contacted the Department of Transportation Research and Special Program Administration (DOT-RSPA), and received a copy of the applicable paragraphs in 49 CFR 173 (Ref. 2) and packaging instructions 809 and 813 for air and water transportation. These extracts are attached at Appendix B. These companies indicated no further or more stringent requirements were necessary for their purposes.

The companies contacted were nearly unanimous in their surprise that they were contacted concerning long-term storage of caustic and hazardous wastes. Hazardous waste handling companies, under the current requirements of the Resource Conservation and Recovery Act (RCRA), are restricted in the methods and time for which they are allowed to store wastes at various sites. Transfer, Storage, and Disposal (TSD) sites are limited to one year, while hazardous waste generators are limited to 90 days.

Further, most of the companies who handle and store hazardous waste also have hazardous waste destruction facilities, most often incinerators. A company which has large amounts of liquid hazardous waste stored on-site is not operating its incinerator efficiently. Long-term storage of hazardous wastes for these companies is measured in weeks or months, rather than years or decades, as is required for DS2 storage. For this reason, most hazardous waste handlers could not begin to suggest proven methods for weather-proofing containers beyond painting them or warehousing them.

Several companies contacted had landfill facilities for long-term storage of non-burnable wastes. Under current laws, most of these wastes are solids, often contaminated with hazardous liquids. When queried about corrosion protection, the response was usually that corrosion protection of the containers in a landfill was rarely considered.

Modern landfills are lined with thick polyethylene sheets, which drain any liquid seepage to a sump, where pumps remove the liquid for subsequent treatment. Several POCs even suggested that some corrosion of the waste drums was beneficial, as the liquids which seeped into the sump were burnable, but not ordinarily economically recoverable, hence the long-term landfill storage. Any liquid wastes which percolated out of their solid matrix and were recovered at the sump could be pumped into drums and taken to an incinerator, thereby reducing the level of hazard in the landfill.

Several companies were reticent to give "free advice" to the Government, but would be quite happy to sign a contract to develop a container which would meet the DS2 storage requirements. One individual in particular, Dr. Ahmed of CHEMAREX, stated that he had an idea which his experience indicated would do the job. He further stated that he had a number of potential manufacturers lined up and interested. He wanted, however, to protect his business and financial interests, and would not reveal his idea to the task team. The Project Engineer suggested that CHEMAREX submit their concept to the Government in the form of an unsolicited proposal, and provided them with the name and address of the Contracting Officer's Representative.

Those companies which did make recommendations for improved containers offered the following techniques:

- Use stainless steel for the container.
- Use cold-rolled steel with an inner liner of:
 - polyethylene
 - epoxy/epoxy-phenolic
 - urethane
- Use one of the following polymers:
 - high-density polyethylene (HDPE)
 - fluorinated HDPE
 - polypropylene
 - polyetheretherketone (PEEK)
 - fiberglass composite
 - other fluorinated polymers
- Use a shrink-wrap overpack on the can.
- Over coat the paint on the can with:
 - sprayable elastomeric coating (urethane or other)
 - polyurethane (currently used)
 - ероху
- Change from lead solder to silver solder.

5. DISCUSSION OF FINDINGS

5.1 STAINLESS STEEL

Several companies recommended the use of stainless steel to manufacture the cans. Stainless steel exhibits excellent corrosion resistance. Stainless steel containers are made by many firms and are widely used commercially. Stainless steel is, however, four to five times more expensive than carbon steel or cold-rolled steel (One firm priced carbon steel at \$0.35/pound and stainless at \$1.53 per pound, or 4.4 times the cost of carbon steel.) While this may solve the long-term storage problem, it would greatly increase the cost.

5.2 LINED-STEEL CANS

Several recommendations for cans lined or coated with a chemical resistant polymer were made. Polyethylene liner bags are available commercially, but may not be useful for the production of DS2. Cans coated with a chemical resistant material, such as polyethylene, polypropylene, polyurethane, or epoxy/epoxy-phenolic

materials may show some enhanced resistance to corrosion and leakage, but an internal barrier would not solve the problem of environmental corrosion of the seals.

5.3 POLYMERIC CONTAINERS (Ref. 3)

A number of companies suggested the use of polymeric containers to replace the current materials. The polymer recommended most often was polyethylene, but polypropylene and fiberglass composites were also mentioned. Previous studies have indicated that DS2 is indeed compatible with polyethylene and polypropylene, but that polyethylene begins to crack and seep under long-term high temperature storage. Polypropylene is reported to have better high-temperature properties, but is also more brittle, and may suffer under rough handling. (Ref. 4)

One polymer specifically suggested by the Contracting Officer's Representative (COR) was polyetheretherketone (PEEK). PEEK is a semicrystalline aromatic thermoplastic which is reported to be quite tough. The glass transition temperature of PEEK is about 143° C (289° F), and PEEK has a particularly high fracture energy of about 500 J/m^2 . (Ref. 5)

PEEK is currently produced by ICI Advanced Materials. Contact with representatives from ICI indicates that PEEK would have no problems containing sodium hydroxide, but that no data are available for the other two components. The representative was not sure that PEEK would be able to contain DS2 for the length of time needed for the required shelf life. PEEK shows excellent chemical resistance to glycols, methanol, ethanol, diethylamine and diethylether in short term testing (seven days immersion at 200°C (420°F)). Longer tests have not been conducted. A more complete breakdown of the characteristics is presented at Appendix C. Samples are being obtained for Government testing.

One company makes containers of polyethylene with an internal fluorocarbon barrier which is claimed to improve polyethylene's chemical resistance. Samples of the containers were obtained for subsequent Government testing.

Another polymer specifically suggested by the COR for investigation was KYNAR (polyvinylidene fluoride, PVF₂). KYNAR is one of a number of fluorinated polymers commercially available, which include TEFLON (polytetrafluoroethylene, TFE), KEL-F (polychlorotrifluoroethylene, CTFE), FEP (a copolymer of TFE and hexafluoropropylene) and HALAR (a copolymer of CTFE and ethylene).

TEFLON is the most chemically resistant plastic commercially available and is unaffected by acids and alkalies (except high temperature fluorine and chlorine gas, and molten metals) up to 500°F (260°C). TEFLON, however, is difficult to work with, requiring complicated powder-metallurgy techniques.

KEL-F is also highly chemical resistant, can be used at temperatures up to $350^{\circ}F$ ($180^{\circ}C$), and can be made into a transparent film. KEL-F is expensive (\$25-30 per pound) and cannot be used as a shrink-wrap. Further information is presented at Appendix D.

FEP is similar to TFE, in that it has good chemical resistance to $400^{\circ}F$ ($200^{\circ}C$), and the advantage that it can be extruded on conventional extrusion equipment.

KYNAR is reported to have excellent resistance to acids and alkalines up to $300^{\circ}F$ ($150^{\circ}C$) and can be extruded. However, KYNAR is not recommended for use with organic amines. (Ref. 6) Further information is presented at Appendix E.

HALAR also has good chemical resistance up to 300°F (150°C) and can be extruded.

Another compound is perfluoroalkoxy (PFA), which has similar properties to FEP at temperatures approaching 600°F (300°C).

The tables in Appendix F summarize information dealing with commercially available polymers.

5.4 FIBERGLASS COMPOSITE CONTAINERS

Several companies contacted recommended the use of fiberglass composite containers for replacement DS2 containers. Fiberglass composites consist of polymeric matrices reinforced with fibers of various types, which can provide a wide range of flow properties, stiffness, and strength (Ref. 7). Fiberglass is, in effect, a generic name, as fibrous reinforcement can be provided by a wide variety of materials, such as aramid fibers, carbon whiskers, and other natural and artificial fibers, as well as glass filaments. One form of glass, C-glass, based on a soda-lime borosilicate composition, is particularly useful because of its extremely high resistance to chemical corrosion. (Ref. 7)

Matrix selection is an important design consideration for fiberglass composites. Current resin (matrix) chemistry can accommodate nearly every conceivable product application. Common matrices used are (Ref. 7):

- Ероху
- Polyester
- Phenolic
- Melamine
- Polyurethane
- Polyamide

- Polycarbonate
- Polyether
- Polystyrene
- Polypropylene
- Polyethylene
 - Poly(ethylene-co-vinyl acetate)

Polyesters are some of the most common matrices, due to their adequate resistance to water and chemicals, weathering, aging, and low cost. Polyesters, however, can only withstand temperatures to about 80°C (176°F). (Ref. 5)

Epoxy matrices are more expensive than polyesters, but have better moisture resistance and a higher useful temperature range. The most important variety of epoxy matrices is a condensation product of epichlorohydrin and bisphenol A. (Ref. 5)

An important problem with polymer matrices is associated with environmental effects. Polymers can degrade at moderately high temperatures and through moisture absorption. Moisture absorption causes swelling and can lead to severe internal stresses. (Ref. 5)

The following table presents a comparison of some of the more common fiberglass materials. (Ref. 8)

Table 1. Typical properties--unreinforced resin casts

Renia			P1		سبه لمنسبت	-	-			
	Fluored Mengsh MPs	Totals srength MPa	Temite medicine GPs	Elenganon %	Hem defenses temperature "C	Normal thermal usage front "C	Water	Solvens	Acai	Albeli
Unanament polymer					•					
Ortho-phobolose	100-135	39-75	. 75 4 5	1-3-4-0	55-100	80-100	fair	poor fair	fair	peer
leo-philippine	110-148	55-90	3 0-40	+ e-3- e	100-125	100-130	good	fair	good	poer/fee
Medikal bushenal type	125-135	45-75	}2-}6	09-24	130-180	130-106	very good	fair	good	lair/good
(المعادية (المعادية)										
Abphatic polynomes ours	85−125	39-70	3-5	14-3-5	60-00	100	good	(sir/good	(nic/good	مجوزيندا
Beren trabuendo comples	110	85	30-40	14-2-5	120-190	99-159		fair/good	good	good
Village sense our	89-130	40-75	34-3-5	1-5-3-5	85-170	120-180	good granifiest	good	(nic/good	9000
Artestana anhydrida esse	79-130	80-105	24-3-5	24-2-5	139-200	150-220	peer/fair	poet/feir	good	poor
liopi case	110-130	70-65	3-3	10-40	99-125	130-188	good	fair/good	good	
Pedintele	73-130	10-120	3-1-4-7	24-3-5	239-369	250-400	low	,		gend lev
Principle-Creates	110-120	75-110	41	1-5-3-0	169-249	150-300	استبعد	good	good	fairjanni
Manadas furnise	100-120	60-75	25-25	+5-14	189-220	250-300	good	ensolvet	good	poor
Mone					,	230-300		2007	Cair/gead	poer/fair

Metr: The data great as this table is to be regarded as indicates early of general room performance in the objects shown. Department from secondard incomes in rooms, eccentiating agent, rooms, eff., Oth produce large property changes.

5.5 EXTERNAL COATINGS

One of the more reasonable approaches mentioned by the industrial POCs was the use of a shrink-wrap overpackage on the current DS2 cans. Shrink-wrapping has the advantages of simplicity and low-cost, but may have limited effectiveness. Shrink-wrapping uses polyethylene films which are loosely wrapped around the container and then are heat-sealed to conform to the package at a temperature of 300°F (150°C) for about 10 seconds (6 mil polyethylene film) (Ref. 9). A thinner film might be a viable option, as the short time in the hot oven will not cause enough heat transfer to present a fire or explosion risk with the DS2 (flashpoint 160°F).

The major drawbacks of shrink-wrapping are the potential increases in cost due to changes/additions to the production line, and potentially limited effectiveness. While shrink-wrapping is a simple task and is amenable to incorporation in an assembly line, adding the process to the production line represents an added cost.

As with any external weatherproofing technique, the effectiveness of shrink-wrapping will depend on the treatment of the finished package. Any weakness in an external coating will allow water to penetrate, promoting the corrosion of active sites, such as the welds or solder joints, where differing metals and alloys can undergo galvanic activity, eventually resulting in penetration and loss of seal integrity.

Rough handling of DS2 cans already has resulted in a history of disruption of the (older) alkyd enamel and (more recently) polyurethane camouflage coatings, leading eventually to seepage of the DS2. A shrink-wrap overpack may reduce this problem, but also may not solve it. Polyethylene films get brittle during long-term environmental exposure, and would eventually flake off. The potential increase in shelf life of the DS2 container may offset the additional cost of producing the shrink-wrapped containers, and may result in a lower life-cycle cost, but the task team is unable to quantify any cost-savings.

One company suggested the use of a sprayable elastomeric coating over the current paint. The formulation could be polyurethane-based (one-component or multi-component) or based on other formulations. A sprayable elastomer would be more resistant to damage from rough-handling than the current MILSPEC polyurethane-based CARC, which tends to be brittle. Testing would be required to determine compatible overcoating formulations.

A few companies indicated that a second coat of a good paint could solve the problem. Some paints recommended were epoxy paints or polyurethane paints. A comparison of a list of coatings suitable for atmospheric service (Ref. 10) is presented at Appendix G. However, since the containers are currently painted with a MILSPEC polyurethane paint, this does not seem to offer a viable solution. The problem starts with scratches or nicks to the paint, as previously mentioned, and a second coat of paint or touch-up paint would not be highly effective in preventing corrosion under the typical rough-handling environment to which the containers are subjected.

5.6 SOLDERS

Most cans produced commercially are sealed with a Lead-Tin-Bismuth solder. These solders are inexpensive and are easily worked, as they soften in the 260-375°F range (depending on the exact composition). The following table presents data on these low-melting point solders (Ref. 11):

Table 2. Melting Point Solders

(From N.B.S. Circular 492)

	Composition, Percent	Liquids Temperature °F	
Pb	Sn	Bi	
25 50	25 37.5	50 12.5	266 374
25	50	25	336

One POC suggested switching from the commonly used low melting point solders to a silver solder. Data on the various silver solders is presented below (Ref. 11):

Table 3. Brazing Filler Metals (Solders)

AWS-ASTM Clamification	Solidus, °F	Liquidua, *F	Brating Temperature Range, "F	Ag	Al	As	Au	В	Be	Bi	С	Cd	Cr	Cu	Pe	Li	Me	Ma	Ni	P	Рь	Sb	Si	Sa	'n	Za	Each FO	Total .	AWS-ASTM Clamification
SILVER BAg-1	1125	1145	1148	44-46																									
	1 1		2400	H9-51					l			23- 17- 19- 17- 19- 15- 17-	i	14-10												14-18		l .	BAg-1
DATE	1100	11/3	1400	34-36			1			L		17- 19	1	14.5- 16.5 25- 27					1	1						14.5- 18.5		0.15	BAg-la
			11550	i	1		ļ		ļ	1		17- 19		25- 27	l											19-		0.15	BAg-2
BAg-3	1170	1270	1270- 1500	49-51	1				1	ŀ	١.,	15- 17		14.5- 16.5	l				2.5-							23 13.5 17.5		0.15	BAg-3
BAg-4	1240	1435	1435- 1650	39-41	1							"		29-					2.5- 3.5 1.5- 2.5							26-		0.15	BAg-4
BAg-5	1250	1370		44-46	1									29-					2.5	ĺĺ						30 23-	!	0.15	BAg-5
BAg-6	1270	1425	1425-	49-51		1								31 33-												26- 30 23- 27 14- 18		1	BAg-6
BAg-7	1145	1205	1600 1206-	55-57	l					l				35 21-					1					4.5.		18 15-		i	BAg-7
BAg-8	1435	1435	1400 1435	71-73										29- 31 29- 31 33- 35 21- 23- 23- 24- 25- 25- 25- 25- 25- 25- 25- 25- 25- 25		ĺ	[4.5- 5.5		19		1	
	1 1		1650		ì								}	Bel.		. 12												1 1	BAg-8
	1325	1878	600 578	71-73											,	0.15- 0.3												1 1	BAg-8a
		1105	778	53-55										Bai.											l	4.0- 6.0		0.15	BAg-13
BAg-18	1115	1125	1550	59-61	l			1 1						Bal.						0.025				9.5- 10.5				0.15	BAg-18
BAg-19	1435	1635	1610- 1800	92-93			_							Bal.		0.15- 0.3												0.15	BAg-19

The advantage of the use of silver solder is that it is more "noble" (less reactive) than the low melting point solders, and would last longer under environmental exposure. The disadvantages are the increased cost (about \$0.10 of solder per can for silver solder) and the higher working temperature required.

The requirement for a higher working temperature for silver solder could pose some problems on the production line. The higher temperature required could pose a greater risk of flashing the components of DS2. However, there are techniques available which provide local heating quickly enough to successfully solder the can without significantly increasing the temperature of the bulk liquid for the larger containers. The small (1-1/3 quart) container will present the greatest hazard. Likewise, the heat transferred to the container will increase the pressure inside, potentially causing some deformation of the container, especially the small can.

6. CONCLUSIONS

In general, contacting hazardous waste management companies was not useful for this task. Regulatory strictures prevent the companies from storing wastes for longer than one year, and economics dictate that the faster the incinerator destroys the liquid wastes the quicker the company realizes a return on its investment. Storing caustic liquid wastes for long periods just doesn't make sense.

Federal regulations, issued by the Department of Transportation, dictate the types of containers to be used for specific chemicals and few, if any, companies in the U.S. make any improvements to these DOT-specified containers beyond painting them.

Stainless steel was frequently recommended as the best option for a non-corroding container. Stainless steel would be able to meet all the rough-handling and storage requirements needed, but would be expensive for use as a disposable can.

Containers made from a variety of polymers were suggested as replacements for carbon steel or Terne plate. Polyethylene and polypropylene are commonly used for chemical storage and overpacking, but may not perform well over the longer periods demanded by the Army. Fluorinated polymers may be useful, and should be explored further. Another possible candidate is PEEK.

The use of a polyethylene-film shrink wrap would add a water-repellent barrier to the outside of the DS2 container and could extend the shelf life of the can significantly. However, as with paint, rough handling could cause punctures or tears in the shrink wrap which would negate its effectiveness.

An elegant solution to the problem with corrosion of the solder seals is to change from the lead-tin-bismuth (Pb-Sn-Bi) solder currently used to a more noble, and more expensive, silver solder. Silver solder would necessitate changes to the production line and may create a hazard because of the higher operating temperature required.

While not specifically required in this survey, some potentially beneficial information concerning costs was collected. These data are presented in Appendix H.

7. RECOMMENDATIONS

The following techniques are recommended as potential improvements to the Technical Data Package (TDP) for the cans for DS2:

- Use a silver solder to seal the end caps.
- Apply an elastomeric sealant.
- Apply a shrink-wrap outer coating.
- Investigate the use of PEEK or fluorocarbons for containers.
- Prevent rough-handling of the cans to avoid scratching the paint.

The use of stainless steel for the can would correct the problem at hand, and may be the ultimate answer. However, the high cost of the can poses a potential obstacle to its adoption. In addition, stainless steel does not accept paint very well, and would be difficult to camouflage.

REFERENCES

- 1. Material Safety Data Sheet for DS2, dated 29 Nov 89, U.S. Army Chemical Research, Development and Engineering Center.
- 2. 49 Code of Federal Regulations 173.249, U.S. Government.
- 3. <u>Perry's Chemical Engineer's Handbook, Sixth Edition</u>, Don W. Green editor, (c) 1984 by McGraw-Hill, Inc., pages 23-48 to 23-57.
- 4. "Assessment of New Packaging Materials for Decontaminating Agent, DS2", J. P. Pfau et al, Battelle Columbus Labs, CRDEC-CR-011, December 1988.
- 5. <u>Composite Materials: Science and Engineering</u>, Krishan K. Chawla, Copyright 1987 by Springer-Verlag New York, Inc., pp. 63-67.
- 6. "Solvent Compatibility Table", Upchurch Scientific Co., 1988.
- 7. Encyclopedia of Polymer Science and Engineering, 2^d Edition, Copyright 1985 by John Wiley and Sons, Inc., Vol. 2, pp. 118-119; Vol. 4, p. 3 and pp. 284-295; Vol. I, p. 133.
- 8. <u>Fiber Composite Hybrid Materials</u>, N.L. Hancox, Editor, Copyright 1981 by MacMillan Publishing Co., Inc., p. 41.
- 9. Telephone conversation with Mr. John Antal, U.S. Army School of Military Packaging Technology.
- 10. <u>Marine Corrosion: Causes and Prevention</u>, F.L. LaQue, (c) J. Wiley and Sons, New York, 1975, pp. 302-305.
- 11. CRC Handbook of Chemistry and Physics, 69 Edition, 1988-89, Robert C. West, Editor, (c) 1988 by CRC Press, Inc., pp. F 126-128.
- 12. "Evaluation of Terne Plate for DS2 Decontaminating Agent 1-1/3 Quart Container", D.S. Eng, U.S. Army Chemical Research and Development Center, ARSCL-TR-83062, June 1983.

Blank

APPENDIX A

COMPANIES CONTACTED

ABCO Industries, Inc. P.O. Box 335 Roebuck, SC 29376 1 (803) 576-6821 Janine Dworley

Air Products and Chemicals, Inc. Surface Treated Products, Airopak Containers Division Allentown, PA 18195 1 (800) 247-6725 Laurie Maurer

All-American Environmental Corp 140-53rd Street Brooklyn, NY 11232 1 (718) 492-7400 Joe Capp

All-Pak, Inc. 2260-T Roswell Drive Pittsburgh, PA 15205 1 (412) 922-4566 Bill Barger

Allstate Can Corp. 40-T Isabella St. Clifton, NJ 07012 1 (201) 773-0100 Ron Peppele

American Metal Fab., Inc. 55515 Franklin Industrial Park Three Rivers, MI 49093 1 (616) 279-5108 Al West

American Technology and Research Industries, Inc. 1510 SW 17th Street, Dept. RL Ocala, FL 32674 1 (904) 622-4242

American Science and Technology, Inc. 1 (609) 786-1751 George Lopez

American Waste, Inc. P.O. Box 306 Maywood, IL 60153 1 (708) 681-3999 Aptus Environmental Services, Inc. Coffeeville, KS

Ashland Chemical Company, Ind. Chem. and Solvents Div. P.O. Box 2219
Columbus, OH 43216
1 (614) 889-3333
Ron Cimmino

B.E.S. Environmental Specialists 82-86 Boston Hill Road Larksville, PA 18651

BCM Engineers
1 Plymouth Meeting, Suite 506
Plymouth Meeting, PA 19462
1 (215) 825-3800

Belmet Products, Inc. 60 Beadel Street Brooklyn, NY 11222 1 (718) 782-3554 Rich Goss

Bonar Plastics, Inc. 19705 SW Teton Avenue, P.O. Box 487 Tualatin, OR 97062 1 (503) 692-0560 Phil Sargeant

Browning Ferris Industries

By-Products Management of Ohio, Inc. 17879-T St. Clair Avenue Cleveland, OH 44110 1 (216) 486-9100 Carl Munn

CBI Services, Inc. St. George Road Bourbonnais, IL 60914-7001 1 (815) 933-4440 Chuck Bull

Chemarex/Cal Bionuclear Corp 13125 South Broadway Los Angeles, CA 90061 1 (213) 515-5260 Dr. Ahmed Chem-Clear 2900-T Broadway Near Independence Rd. Cleveland, OH 44115

Chemical Waste Management Inc. 3003-T Butterfield Road Oak Brook, IL 60521 1 (708) 218-1500 Daye McKuehn

Cleveland Steel Containers 350 Mil Street Quakertown, PA 18951 1 (215) 536-4477 Don Doulan

Coating Systems, Inc. 55 Crown Street, Dept. TR Nashua, NH 03060 1 (603) 883-0553 Aram Jeknavorian

Columbiana Boiler Company 198 West Railroad Street Columbiana, OH 44408 1 (216) 482-3373 Bill Riddle

Compliance Services, Inc. Wayne, PA 1 (215) 254-0842 Russ Phifer

Consolidated Container Corp. 735 N. 3rd Street, Dept. 110 Minneapolis, MN 55401 1 (612) 338-0753 Joel Wirth

Container Products, Inc. 7838 Iron Street, P.O. Drawer 158 Masury, OH 44438 1 (216) 448-6841 Robert Beaudrie

Container Research Corp. Hollow Hill Road Glen Riddle, PA 19037 1 (215) 459-2160 Chris Leiser

Crown Anderson, Inc. 306 Dividend Drive Peachtree City, GA 30269 1 (800) 241-5424

Crown Rotational Molded Products, Inc. P.O. Drawer 577
Marked Tree, AR 72365
1 (501) 358-3400
Jack Hendricks

Cyprus Environmental Industries, Inc. 300 Crescent Court Ste 1105 Dallas, TX 75201 1 (214) 871-2299 Bill Conley

DAS Environmental, Inc. 2516 E. Ontario Street, Dept. MS Philadelphia, PA 19134 1 (215) 739-3445 Wayne Chapman

Dipseal Plastics, Inc. 2311-23D Avenue Rockford, IL 61104 1 (800) 634-7821 Scott Platt

Douglass, Gordon, and Associates 121 Berwick Heights Road, P.O. Box 496-A East Stroudsberg, PA 18301 1 (717) 476-6600 Mr. Douglass

ECOVA
12790 Merit Drive Suite 220-A
Dallas, TX 75251
1 (214) 238-0600
Arnie Sugar

ETI Group Companies of North America P.O. Box 2286 Denver, CO 80201

Ellisco, Inc. 4010 N. American Street Phildelphia, PA 19140 1 (215) 223-3500 Peter Riley Ensign Bickford Haz-Pros, Inc. 656 Hopmeadow Street Simsbury, CT 06070 1 (203) 651-2603 John Fowler

Envirite
600-T West Germantown Pike
Plymouth Meeting, PA 19462
1 (215) 828-8655
Bill McTige

Environmental Contracting and Supply Co. P.O. Box 338-T La Grange, IL 60525 1 (708) 579-1104 Dick Halm

Environmental Elements Corp. 3700 Kopper Street, P.O. Box 1318 Baltimore, MD 21203 1 (301) 368-7000 Werner Eichanmer

Environmental Technologies International P.O. Box 2841 Reno, NV 89505 1 (702) 322-1164

Envirosafe Services, Inc. 115 Gilbralter Road Horsham, PA 19044

FMP Corp. 250 Risdon Street Naugatuck, CT 06770 1 (203) 723-5232 Claire Pelgrow

Freund Can Company 167 West 84th Street Chicago, IL 60620 1 (312) 224-4230 Mr. O'Brien

GSX Chemical Services, Inc. P.O. Box 21079, Dept. TR Columbia, SC 29221 1 (803) 798-2993

HAZMAT Training, Information and Services, Inc. 6480 Dobbin Road Columbia Center Columbia, MD 21045
1 (301) 964-0940

HEMC Environmental Management 2681-T Dow Avenue, Unit No. C-1 Anaheim, CA 92680 1 (714) 364-3005

Hardigg Industries, Inc. 393 N. Main Street South Deerfield, MD 01373 Dave Macdonald

Hart Environmental Management Corp. 530 Fifth Aveneue, Dept. TR New York, NY 10036 1 (212) 447-1480 June Williams/Fred Hart

Helios Container Systems, Inc. 315-T Fairbanks Street Addison, IL 60101 1 (708) 529-7590 Barbara Donner

Hitech Research and Development, Inc. 8625-T 68th Street, S.E., P.O. Box 998 Calgary, Alberta, Canada

Hudson Tool and Dye Company 18 Malvern Street Newark, NJ 07105 1 (201) 589-1800 Bill Cuthbert

Hunter Drums LTD. 1121 Pioneer Road Burlington, Ontario, Canada 1 (416) 333-1145 Wayne Gow

Inland Pollution Services, Inc. 646-T Garden Elizabeth, MJ 07202 1 (201) 353-5544 John Guy

International Technology Corp. 23456-T Hawthorne Bvld. Torrance, CA 90505 1 (213) 378-9933 Laura Johnston/Mr. Soesbe

J&B Systems P.O. Box 245 Milford, OH 45150 1 (513) 732-2000

JMH Industries, Inc.
217-219 Versaw Ct.-T P.O. Box 930-T
Berthoud, CO 80513
1 (303) 532-4040
Kaupp, C.B. and Sons, Inc.
12 Newark Way
Maplewood, NJ 07040
1 (201) 761-4000
Clem Kaupp, Jr.

Kosempel Mfg. Co. 3700 Main Street Phildelphia, PA 19134 1 (215) 533-7110 John Solheim

M & S Engineering and Mfg. Company, Inc. 95 Rye Street Broad Brook, CT 06016 1 (203) 627-9396 Sigmuand Koslowski

Maecorp 17450-T S. Halsted Street Homewood, IL 60430 1 (800) 372-7745 Phil Mazor

Marisol, Inc. 123 Factory Lane Middlesex, NJ 08846 1 (201) 469-5100

McClain Industries, Inc. P.O. Box 913 Sterling Heights, MI 48087 1 (405) 691-6311 Jamie Reeves Melmat, Inc. 1400 W. 240th Street Harbor City, CA 90710 1 (213) 325-1625 John Mellott

Mid-States Metal Lines, Inc. 4001-T E. 137th Terr. Grandview, MO 64030 1 (816) 765-5444 Les Martin

Mirax Chemical Products, Inc. Metal Containers Division 4997 Fyler Avenue St. Louis, MO 63139 1 (314) 752-1500 Oliver Clert

Mutual Stamping and Manfacturing Co. 241 Shetland Road, P.O. Box 656-T Fairfield, CT 06431 1 (203) 877-3933 Bob Fox

National Packaging Services, Inc. 34-40 Laurel Hill Blvd. Maspeth, NY 11378 1 (718) 786-6343 Bob Strasser

OH Materials Corp. P.O. Box 551 Dept. TR Findlay, OH 45839 1 (419) 423-3526 Marsha Robinson

PDI Plastidip International P.O. Box 130 Circle Pines, MN 55014 1 (612) 785-2156 Chuck Nelson

Pacific Rim Packaging Corp. 801-T Chesley Avenue, P.O. Box 4026 Richmond, CA 94804-0026 1 (415) 234-7114 Glen Langstaff Packaging Specialties, Inc. 9522 Richmond Avenue Cleveland, OH 44105 1 (216) 271-7988 Paul Libby

Potomac Metal and Supply, Inc. Route 51, Box 1415 Cumberland, MD 21502 1 (301) 722-4030

Process Technology Co. 1 (800) 782-0841

Quick Draw and Machining, Inc. 4869-T McGrath Street
Ventura, CA 93003
1 (805) 644-7882
Mr. Ward-Llwewllyn

Rack Engineering Company 299-T S. 7th Street Connellsville, PA 15425 1 (412) 628-8400 Frank Minor

Rem-Tech Loiseberry, PA 1 (717) 938-6745 Errol Fletcher

Robertson Can Company 16 N. Lowry Avenue Springfield, OH 45501 1 (513) 323-3747 Mr. Robertson

Rochelle Steel Fabricating, Inc. Rt. 251 South Rochelle, IL 61068 1 (815) 562-7805 Tom Hart

Rollings Environmental Services(DE), Inc. One Rollins Plaza, P.O. Box 2349-T Wilmington, DE 19899
1 (302) 479-2700
Fred Gerdes

Roy F. Weston, Inc. Weston Way West Chester, PA 19380 1 (215) 692-3030 Joel Carmazine

Safety Shield Corp.

Scientific Plastics CO., Inc. 550 Elizabeth Street P.O. Box 642 Waukesha, WI 53187 Mr. Portz

Skolnik Industries, Inc. 4900 S. Kilbourn Ave. Chicago, IL 60632 1 (312) 735-0700 Dan Abram

Sommer Metalcraft Corp.
500 Poston Drive
Crawfordsville, IN 47933
1 (800) 654-3124
Greg Bryant
Sonoco Plastic Drum
1225-T Davies Street
Lockport, IL 60441
1 (815) 838-7210

Statewide Environmental Services 1 (415) 865-2978 Dick Clark

Staver Company, Inc. 45-T Saxon Avenue Bay Shore, NY 11706 1 (516) 666-8000 J.B. Lazarus

Steel King Industries, Inc. 2700 Chamber Street, Dept. KG Stevens Point, WI 54481 1 (715) 341-3121

Steeltin Can Corp. 1101 Todds Lane Baltimore, MD 21237 1 (301 686-6363 Rich DiMarcantonio Stout Environmental R.R. 4 Box 140 N. Woodbury Road Sewell, NJ 08080

TDP Industries, Inc. 603A Airport Blvd. Doylestown, PA 18901 1 (215) 345-8687 Ray Miller

TRC Companies, Inc. 800-T Conneticut Blvd. East Hartford, CT 06108 1 (203) 289-8631 George McKenney

Thermal Oxidation Corp. Roebuck, SC 29376 1 (803) 576-1085 Diane Prioletti

U.S. Ecology

Van Leer Corp. 1 (800) 323-3151

Washington Aluminum Company Knecht Avenue Baltimore, MD 21229 1 (301) 242-1000 Stephanie Coulteau

Waste Research and Reclamation Company, Inc. Industrial Center Highway 93 Eau Claire, WI 54701 1 (715) 836-8760 Jack Viesezak Blank

APPENDIX B

Extract from 49 CFR 173 and Packaging Instructions 809 and 813

§ 173.249

49 CFR Ch. I (10-1-88 Edition)

discs having a %-inch breather hole in the center thereof.

(6) Specification MC 310, MC 311, or MC 312 (§ 178.343 of this subchapter). Cargo tanks. Bottom outlets are authorized if they meet the requirements of § 178.343-5 of this subchapter.

(7) Spec. 60 (§ 178.255 of this subchapter). Portable tanks.

(8) Specification IM 101 portable tanks (§§ 178.270, 178.271 of this subchapter) are authorized under conditions specified in the IM Tank Table.

(49 U.S.C. 1803, 1804, 1808; 49 CFR 1.53, App. A to Part 1)

(29 FR 18725, Dec. 29, 1964, as amended by Order 71, 31 FR 9070, July 1, 1966; Order 73, 32 FR 3456, Mar. 2, 1967, Redesignated at 32 FR 5606, Apr. 5, 1967]

EDITORIAL NOTE: For Federal Register citations affecting § 173.248, see the List of CFR Sections Affected appearing in the Finding Aids section of this volume.

- § 173.249 Alkaline corrosive liquids, n.o.s.; alkaline liquids, n.o.s.; alkaline corrosive battery fluid; potassium fluoride solution; potassium hydrogen fluoride solution; sodium aluminate, liquid; sodium hydroxide solution; potassium hydroxide solution.
- (a) Alkaline corrosive liquids, n.o.s.; alkaline liquids, n.o.s.; alkaline corrosive battery fluid; potassium fluoride solution; potassium hydrogen fluoride solution; sodium aluminate, liquid; sodium hydroxide solution and potassium hydroxide solution, when offered for transportation by carriers by rail freight, highway, or water must be packed in specification containers of a design and constructed of materials that will not react dangerously with or be decomposed by the chemical packed therein as follows:
- (1) In containers prescribed in § 173.245.
- (2) Specification 15A, 15B, 15C, 16A, 19A, or 19B (§§ 178.168, 178.169, 178.170, 178.185, 178.190, 178.191 of this subchapter). Wooden boxes with inside glass or earthenware containers not over 2 gallons each, or with metal containers, not over 5 gallons each.
- (3) Specification 5 (§ 178.80 of this subchapter) metal drums. Openings must not exceed 2.3 inches in diameter.

(4) [Reserved]

- (5) Specification 103, 103W, 103A, 103AW, 103B, 103BW, 104, 104W, 105A100, 105A100W, 111A60F1, 111A60W1, 111A60W2, 111A100F2, 111A60W5, or 111A100W4 (§§ 179.100, 179.101, 179.200, 179.201 of this subchapter). Tank cars.
- (6) Specification MC 303, MC 310, MC 311 or MC 312 (§ 178.343 of this subchapter). Cargo tanks. Specification MC 303 is authorized for alkaline corrosive liquids, n.o.s., and alkaline liquids, n.o.s. only and is not authorized for transportation by water: Bottom outlets are authorized if they meet the requirements of § 178.343-5 of this subchapter.
- (7) Specification 57 or 60 (§§ 178.251, 178.253, 178.255 of this subchapter). Portable tanks. Specification 57 portable tank not authorized for transportation by water.
- (8) Spec. 12B (§ 178.205 of this subchapter). Fiberboard boxes with glass inside containers of not over 16 ounces capacity each.
 - (9) [Reserved]
- (10) Spec. 12B (§ 178.205 of this subchapter). Fiberboard boxes, with not more than one glass inside container not over 1 gallon capacity containing sodium hydroxide solution not over 25 percent strength and packed in a strong fiberboard box. Dry chemicals for photographic development process not classed as dangerous articles, contained in suitable inside packages, may be packed in the same outside box. The marking requirements of § 172.312 of this subchapter, shall not apply.
- (11) Spec. 29 (§ 178.226 of this subchapter). Mailing tubes, with not more than one inside polyethylene bottle not over 1-quart capacity each.
- (12) Spec. 1H (§ 178.13 of this subchapter). Metal crate with inside polyethylene container Spec. 2T (§ 178.21 of this subchapter).
- (13) Specification 12B (§ 178.205 of this subchapter). Fiberboard box with inside metal containers. Not more than four 1-gallon or six 1-quart containers may be packed in each box. Maximum gross weight may not

^{&#}x27;The use of existing tanks authorized but new construction not authorized.

exceed 65 pounds and the completed package must meet the test requirements of § 178.210-10 of this subchapter.

- (14) Specification IM 101 portable tanks (§§ 178.270, 178.271 of this subchapter) are authorized under conditions specified in the IM Tank Table.
- (b) The hazardous materials named in paragraph (a) of this section, when offered for transportation by aircraft, must be packaged as follows (also authorized for transportation by rail freight, highway or water):
- (1) In packagings as prescribed in paragraphs (ax8), (10), and (11) of this section and § 173.245(ax7) and (12).
- (2) Spec. 5 or 5A (§ 178.80 or 178.81 of this subchapter). Metal barrels or drums, capacity not exceeding 10 gallons, with openings not exceeding 2.3 inches in diameter.
- (3) Specification 15A, 15B, 15C, 16A, 19A, or 19B (§§ 178.168, 178.169, 178.170, 178.185, 178.190, 178.191 of this subchapter). Wooden boxes with inside glass or earthenware containers not over 1-gallon each, or with inside metal cans, not over 5 gallons each.
- (c) Limited quantities of alkaline corrosive liquids, n.o.s., alkaline liquids, n.o.s., alkaline corrosive battery fluids, and liquid sodium aluminate in inside packagings of not more than 8 fluid ounces capacity each, packed in strong outside packagings, and cushioned with absorbent material in sufficient quantity to completely absorb liquid contents in the event of breakage, are excepted from labeling (except labeling is required for transportation by air) and specification packaging requirements of this subchapter. In addition, shipments are not subject to Subpart F of Part 172 of this subchapter, to Part 174 of this subchapter except § 174.24 and to Part 177 of this subchapter except § 177.817.
- (d) Special exceptions for shipment of certain alkaline in the ORM-D class are provided in Subpart N of this part.
- (49 U.S.C. 1803, 1804, 1808; 49 CFR 1.53, App. A to Part 1)
- (29 FR 18725, Dec. 29, 1964, Redesignated at 32 FR 5606, Apr. 5, 1967)

EDITIORIAL NOTE: For Federal Register citations affecting § 173.249, see the List of CFR

Sections Affected appearing in the Finding Aids section of this volume.

- § 173.249a Cleaning compound, liquid; coal tar dye, liquid; dye intermediate, liquid; mining reagent, liquid; and textile treating compound mixture, liquid.
- (a) A liquid cleaning compound subject to this section must not contain any corrosive material specifically named in § 172.101 of this subchapter, except phosphoric acid, acetic acid, and not over 15 percent sodium or potassium hydroxide.
- (b) A liquid dye intermediate is a ring compound, containing amino, hydroxy, sulfonic acid, or quinone group or a combination of these groups, used in the manufacture of dyes, and not otherwise specifically named in § 172,101 of this subchapter.
- (c) A liquid textile treating compound mixture is a mixture used to treat woven, knit or otherwise manufactured fabrics. It does not include mixtures used only to treat fibers, filaments, or yarn used in making the fabric.
- (d) Liquid coal tar dye, liquid cleaning compound, liquid dye intermediate liquid mining reagent, and liquid textile treating compound mixture must be packaged as follows:
- (1) In specification packagings as prescribed in § 173.245.
- (2) In packagings meeting all of the specific requirements prescribed in § 173.245 including packaging type and quantity limitations for inside packagings. The packagings are not required to meet the detailed specification requirements of Part 178 of this subchapter except that size and weight limitations for package types as prescribed in Part 178 may not be exceeded. Not authorized for shipment by aircraft.
- (3) Removable (open) head fiber drum lined or coated on the inside with a plastic material, not over 55-gallon capacity. Not authorized for shipment by aircraft.
- (4) Removable (open) head metal drum, not over 55-gallon capacity. Not authorized for shipment by aircraft.
- (5) Removable (open) head polyethylene drum, not over 6.5-gallon capacity. Not authorized for shipment by aircraft.

The general packing requirements of Part 3, Chapter 1 must be met.

Single packagings are not permitted.

Combination packagings:

Inner

	Glass or egrihenware	Plastic	Metal (not elumintum)	Aluminium	Glass empoule	Particular
	IP.I	IP.3	IP.3	IP.3A	ip.a	packing requirements
UN No.	(L)	(L)	(L)	(L)	(L)	•
1715	1	1	1	1	0.5 0.5	2,5,7,13
1719	1	1	1 No	No No	2.0	13
1722 1739	1	i	No No	No	0.5	. 13
1740	No	i	ï	No	No	
1744	1	1	No	No	0.5	2,13
1750	1	1	1	No	. 0.5	5,13
1754	Į.	1	1	1	0.5	2,7,13
1758	1	1	I.	No	0.5 0.5	2,5,13 2,13
1760	1	ı,	1	No No	0.5 0.5	2,5.13
17 64 1765	1	•	i 1	No	0.5	2,3,13
1768	. No	i	i	No	No	2,5
1774	1	i	No	No	0.5	
1775	Ĭ	Ĭ	1	No	0.5	2,5,21
1776	1	1	1	No	0.5	2,5,21
1777	1	1	1	1	0.5	2,5,7,13,21
1778	1	1	-1	No	0.\$ 0.\$	2,5,21 2,5,21
1782	1	1	1	No No	V.3 No	2,5
1786 1787	No 1	1	No	No	0.5	2,13
1788	i	i	. No	No	0.5	2,13
1789	i	i	No	No	0.5	2,13
1790	No	i	1	No	No	2,5
1791	1	1	1	No	0.5	\$
1796	1	No	1	No	0.\$	5,13
1798	1	No	No	No	0.5	13
1803	1	!	No	No No	0.3 No	
1811 1814	No 1	•	1	No	0.5	
1818	i	i	No	No	0.5	2,13
1824	i	i	i	No	0.5	•
1826	i	No	1	No	0.5	5,13
1828	1	1	1	ı	0.5	5,7,13
1830	1	1	I.	No	0.5	5,13
1831	1	1	!	No	0.5	2,5,13 2,5,13
1834	1	1	i,	i No	0.5 0.5	2,7,13
1 836 190 8	1	1	:	No	0.5	2.13
1940	•	i	i	No	0.5	5
2031	i	No	No	No	0.5	13
2012	i	No	No	No	0.5	13
2240	i.	1	1	No	0.5	2,5,13
2258	1	1	1	No	0.5	2,13
2306	i .	1	ļ	No No	0. 5 0. 5	2,5,13 2,5,13
243 8 24 39	l No	1	1	No No	0.3 No	4,0,03
2439 2444	1	1	1	No	0.5	2,5.13
2502	i	i	i	No	0.3	2,5,13
2564	Ī	i	i	No	0.5	2,5,13
2604	1	1	1	1	0.5	
2677	1	1	ļ	No	0.5	
2679	1	1	i	No	0.5	

	Glass or earthenwere	Plastic	Metal (ngt aluminium)	Aluminium	Glass ampoule	Particular
1141.41	IP.1	1P.2	IP.3	IP.3A	1P.8	packing
UN No.	(L)	(L)	(L)	(L)	(L)	requirement
2681	1	1	1	No	0.5	
2692	1	1	1	No	0.5	2,5.13
2699	ĺ	1	ĺ	No	0.5	5,13,21
2734	1	1	j	No	0.5	2.13
2735	1	1	1	No	0.5	2,13
2789	i	1	i	1	0.5	2,5,7,13
2790	1	1	ì	2	0.5	2,5,7,13
2796	1	1	i	No	0.5	5,13
2797	1	1	j	No	0.5	•
2817	No	1	1	No	No	
2837	1	í	i	No	0.5.	
2879	1	1	1	No	0.5 .	2,5,13
2920	1	1	1	No	0.5	2,13
2922	1	1	i	No	0.5	2,13
			.			

3 Packing Instructions

Dater

Steel drum - 1A2 Aluminium drum - 182 Steet jerrican - 3A2 Plywood drum - 1D Fibre drum - 1G Planic drum - 1H2 Plastic jerrican = 3H2 Wooden box = 4C1, 4C2 Plywood box = 4D Reconstituted wood box = 4F Fibreboard box = 4G

Particular packing requirements:

- 2 Plastic inner packagings must be packed in tightly closed metal receptacles before packing in outer packagings.
- Steel packagings must be corrosion-resistant or with protection against corrosion.
- 7 When aluminium or aluminium alloys are used they must be resistant to corrosion.
- Glass inner packagings and glass ampoules must be packed with absorbent material in tightly closed metal receptacles before packing in outer packagings.
- 21 If free from hydrofluoric acid then glass inner packagings are permitted.

810

Inner

PACKING INSTRUCTION 810

0.5 kg

810

The general packing requirements of Part 3, Chapter 1 must be met.

Glass or earthenware - IP.1

Planie drum - 1H2

sagle packagings are not permitted.

Combination packagings:

	Plastic - IP.2	0.5 kg	
	Metal - IP.3, IP.3A	0.5 kg	
	Glass ampoule - 1P.3	0.5 kg	
Outer	Steet drum - 1A2		Plastic
	Aluminium drum - 182		Woode
	Steel jerrican - 3A2		Plywoo
	Plywood drum - ID		Recoas
	Fibre drum - 10		Fibrebo

Plastic pertican = 3H2
Wooden box = 4C1, 4C2
Phywood box = 4D
Reconstituted wood box = 4F
Fibreboard box = 4G

The general packing requirements of Part 3. Chapter 1 must be met.

Combination packagings:

inner

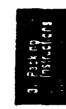
1P.1 1P.2 1P.3 1P.3A 1P.8 packing		Glass or	Plestic	Metal (not	A luminium	Glass ampoule	Perticular
UN No. (L) (L) (L) (L) (L) (L) requirements 1719 2.5 2.5 2.5 2.5 No 0.3 2.5.7,13 1719 2.5 2.5 2.5 No 0.3 1724 2.3 2.5 2.5 No 0.5 5 1722 2.5 2.5 2.5 No 0.5 5 1722 2.5 2.5 2.5 No 0.5 5 1723 2.5 2.5 2.5 No 0.5 5 1724 2.3 2.5 2.5 No 0.5 5 1725 2.5 2.5 No 0.5 5 1726 2.5 2.5 2.5 No 0.5 5 1727 2.3 2.5 2.5 No 0.5 5 1728 2.5 2.5 No 0.5 5 1729 2.5 2.5 2.5 No 0.5 5 1729 2.5 2.5 2.5 No 0.5 5 1720 2.5 2.5 2.5 No 0.5 5 1721 2.5 2.5 2.5 No 0.5 5 1722 2.5 2.5 2.5 No 0.5 5 1724 2.5 2.5 2.5 No 0.5 5 1725 2.5 2.5 No 0.5 5 1726 2.5 2.5 2.5 No 0.5 5 1727 2.5 2.5 2.5 No 0.5 5 1729 2.5 2.5 2.5 No 0.5 5 1729 2.5 2.5 2.5 No 0.5 5 1720 2.5 2.5 2.5 No 0.5 5 1720 2.5 2.5 2.5 No 0.5 5 1721 2.5 2.5 2.5 No 0.5 5 1722 2.5 2.5 2.5 No No 0.5 5 1722 2.5 2.5 2.5 No No 0.5 5 1724 2.5 2.5 2.5 No No 0.5 5 1725 2.5 2.5 No No 0.5 5 1726 2.5 2.5 2.5 No No 0.5 5 1727 2.5 2.5 2.5 No No 0.5 5 1729 2.5 2.5 2.5 No No 0.5 5 1720 2.5 2.5 2.5 No No 0.5 5 1721 2.5 2.5 2.5 No No 0.5 5 1722 2.5 2.5 2.5 No No 0.5 5 1723 2.5 2.5 No No 0.5 5 1724 2.5 2.5 2.5 No No 0.5 5 1725 2.5 2.5 No No 0.5 5 1726 2.5 2.5 2.5 No No 0.5 5 1727 2.5 2.5 2.5 No No 0.5 5 1728 2.5 2.5 2.5 No No 0.5 5 1729 2.5 2.5 2.5 No No 0.5 5 1720 2.5 2.5 No No 0.5 5 1720 2.5		certhenware		••••••			
1715	UN No.						requirements
1719				2.5	2.5	2.0	2.5.7.13
1724							
1722	1724					0.5	
1732 2.5			2.5	2.5	No	0.5	5
1740 No				2.5	2.5		2,5,7,13,21
1747	1740		2.5	2.5	No		
1750 2.5 2.5 2.5 2.5 No			2.5		No		5
1751 2.5 2.5 2.5 2.5 2.5 No 0.3 5 1762 2.5 2.5 2.5 2.5 No 0.3 5 1763 2.5 2.5 2.5 2.5 2.5 No 0.3 5 1764 2.5 2.5 2.5 2.5 2.5 No 0.5 2.5,13 1765 2.5 2.5 2.5 2.5 No 0.3 5 2.5,13 1765 2.5 2.5 2.5 2.5 No 0.3 5 1767 2.5 2.5 2.5 2.5 No 0.3 5 1768 No 0.2 2.5 2.5 2.5 No 0.3 5 1768 No 0.2 2.5 2.5 2.5 No 0.5 5 1771 2.5 2.5 2.5 2.5 2.5 No 0.5 5 1777 2.5 2.5 2.5 2.5 2.5 No 0.5 5 1777 2.5 2.5 2.5 2.5 2.5 No 0.3 2.5,21 1776 2.5 2.5 2.5 2.5 2.5 No 0.3 2.5,21 1778 2.5 2.5 2.5 2.5 2.5 No 0.3 2.5,21 1778 2.5 2.5 2.5 2.5 2.5 No 0.3 2.5,21 1781 2.5 2.5 2.5 2.5 2.5 No 0.3 2.5,21 1782 2.5 2.5 2.5 2.5 No 0.5 3 1782 2.5 2.5 2.5 2.5 No 0.5 2.5,21 1784 2.5 2.5 2.5 2.5 2.5 No 0.5 2.5,21 1789 2.5 2.5 2.5 No No 0.5 2.13 1799 2.5 2.5 2.5 2.5 No No 0.5 2.5 1796 2.5 No No 0.5 2.5 1802 2.5 2.5 2.5 2.5 No No 0.5 3 1803 2.5 2.5 2.5 2.5 No No 0.5 3 1804 2.5 2.5 2.5 2.5 No No 0.5 3 1804 2.5 2.5 2.5 2.5 No No 0.5 3 1804 2.5 2.5 2.5 2.5 No No 0.5 3 1804 2.5 2.5 2.5 2.5 2.5 No No 0.5 3 1804 2.5 2.5 2.5 2.5 No No 0.5 3 1804 2.5 2.5 2.5 2.5 2.5 No No 0.5 3 1804 2.5 2.5 2.5 2.5 2.5 No No 0.5 3 1804 2.5 2.5 2.5 2.5 No No 0.5 3 1804 2.5 2.5 2.5 2.5 No No 0.5 3 1804 2.5 2.5 2.5 2.5 No No 0.5 3 1804 2.5 2.5 2.5 2.5 No No 0.5 3 1804 2.5 2.5 2.5 2.5 No No 0.5 3 1804 2.5 2.5 2.5 2.5 No			2.5	2.5	No		5,13
1762 2.5 2.5 2.5 2.5 No	1753	2.5	2.5	2.5			\$
1763		2.5	2.5	2.5			5
1764	1763		2.5				5
1766		2.5	2.5				2,5,13
1767 2.5 2.5 2.5 2.5 No	1765	2.5					
1768	1766	2.5		2.5			
1769	1767	2.5		2.5			
1771	1768	No		2.5			2,3
1773							5
1776	1771	2.5		2.5			5
1776				2.5			2,3,21
1781 2.5 2.5 2.5 2.5 No 0.5 5 1782 2.5 2.5 2.5 2.5 No 0.5 2,5,21 1784 2.5 2.5 2.5 2.5 No 0.5 5 1787 2.5 2.5 2.5 No No 0.5 2,13 1788 2.5 2.5 2.5 No No No 0.5 2,13 1789 2.3 2.5 No No No 0.5 2,13 1790 No 2.5 2.5 2.5 No No No 0.5 2,13 1790 No 2.5 2.5 2.5 No No No 0.5 2,13 1791 2.3 2.5 No 0.5 2.5 No 0.5 5 1791 2.3 2.5 No 0.5 5 1800 2.5 No 2.5 2.5 No 0.5 5 1800 2.5 2.5 2.5 No 0.5 5 1801 2.5 2.5 No 0.5 5 1802 2.5 2.5 2.5 No No No 0.5 5 1802 2.5 2.5 2.5 No No No 0.5 5 1804 2.5 2.5 2.5 No No No 0.5 1804 2.5 No 0.5 1804 2.5 2.5 No No 0.5 1804 2.5 2.5 2.5 No No 0.5 5 1806 2.5 2.5 2.5 2.5 No No 0.5 5 1807 2.5 2.5 2.5 No No 0.5 5 1808 2.5 2.5 2.5 2.5 No 0.5 5 1810 2.5 2.5 2.5 No 0.5 5 1811 No 2.5 2.5 2.5 No 0.5 5 1812 2.5 2.5 No No 0.5 5 1814 2.5 2.5 2.5 No No 0.5 5 1816 2.5 2.5 2.5 No No 0.5 5 1818 2.5 2.5 No No 0.5 5 1819 2.5 2.5 2.5 No 0				2.5			2.5.21
1782 2.5 2.5 2.5 2.5 No 0.5 2,5,21 1784 2.5 2.5 2.5 No No 0.5 5 1787 2.5 2.5 No No No 0.5 2,13 1788 2.5 2.5 No No No 0.5 2,13 1789 2.5 2.5 No No No 0.5 2,13 1789 2.5 2.5 No No No 0.5 2,13 1790 No 2.5 2.5 No No No 0.5 2,13 1790 2.5 2.5 2.5 No No 0.3 5 1791 2.5 2.5 No 2.5 No 0.3 5 1796 2.5 No 2.5 No 0.5 5 1800 2.5 2.5 2.5 No 0.5 5 1801 2.5 2.5 2.5 No No 0.5 5 1802 2.5 2.5 2.5 No No No 0.5 5 1802 2.5 2.5 2.5 No No No 0.5 1803 2.3 2.5 No No 0.5 1803 2.3 2.5 No No No 0.5 1804 2.5 2.5 2.5 No No 0.5 5 1806 2.5 2.5 2.5 2.5 No No 0.5 5 1811 No 2.5 2.5 2.5 No No 0.5 5 1811 No 2.5 2.5 2.5 No No 0.5 5 1811 No 2.5 2.5 2.5 No No 0.5 5 1811 No 2.5 2.5 2.5 No No 0.5 5 1812 2.5 2.5 No No 0.5 5 1814 2.5 2.5 2.5 No No 0.5 5 1815 2.5 2.5 No No 0.5 5 1824 2.5 2.5 No No 0.5 5 1825 2.5 No No 0.5 5 1826 2.5 2.5 No No 0.5 5,13 1827 2.5 2.5 No No 0.5 5,13 1828 2.5 2.5 No No 0.5 5,13 1829 2.5 2.5 2.5 No 0.5 5,13 1837 2.5 2.5 No No 0.5 5,13 1837 2.5 2.5 No No 0.5 5,13 1838 2.5 2.5 2.5 No No 0.5 5,13 1839 2.5 2.5 2.5 No No 0.5 5,13 1830 2.5 2.5 2.5 No 0.5 5,13				2.5			2,5,21
1784							3
1787 2.5 2.5 No No No 0.5 2.13 1789 2.5 2.5 No No No 0.5 2.13 1789 2.5 2.5 No No No 0.5 2.13 1790 No 2.5 2.5 No No No 0.5 2.13 1790 No 2.5 2.5 No No No 0.5 5 1791 2.5 2.5 No 2.5 No 0.5 5 1802 2.5 2.5 2.5 No No 0.5 5 1802 2.5 2.5 No No No 0.5 5 1803 2.3 2.5 No No No 0.5 5 1804 2.5 2.5 No No No 0.5 5 1808 2.5 2.5 2.5 No No 0.5 5 1809 2.5 2.5 2.5 No 0.5 5 1811 No 2.5 2.5 2.5 No 0.5 5 1812 2.5 2.5 No 0.5 5 1813 2.5 2.5 No 0.5 5 1814 2.5 2.5 2.5 No 0.5 5 1815 2.5 2.5 No 0.5 5 1816 2.5 2.5 2.5 No 0.5 5 1817 2.5 2.5 No 0.5 5 1818 2.5 2.5 No 0.5 5 1818 2.5 2.5 No 0.5 5 1819 2.5 2.5 2.5 No 0.5 5 1819 2.5 2.5				2.5			
1788	1784						
1789 2.3 2.5 No No No 0.5 2,13 1790 No 2.5 2.5 2.5 No No No 0.5 2,13 1791 2.5 2.5 2.5 2.5 No 0.3 5 1791 2.5 2.5 No 0.5 5,13 1799 2.5 No 0.5 5,13 1799 2.5 2.5 2.5 No 0.5 5 1800 2.5 2.5 2.5 No 0.5 5 1801 2.5 2.5 2.5 No No 0.5 5 1802 2.3 2.5 No No No 0.5 5 1802 2.3 2.5 No No No 0.5 5 1803 2.5 2.5 No No No 0.5 5 1804 2.5 2.5 2.5 No No 0.5 5 1806 2.5 2.5 2.5 No No 0.5 5 1806 2.5 2.5 2.5 No No 0.5 5 1808 2.5 2.5 2.5 No 0.5 5 1810 2.3 2.5 2.5 No 0.5 5 1811 No 2.5 2.5 2.5 No 0.5 5 1814 2.5 2.5 2.5 No 0.5 5 1816 2.5 2.5 2.5 No 0.5 5 1816 2.5 2.5 2.5 No 0.5 2,13 1816 2.5 2.5 2.5 No 0.5 2,13 1816 2.5 2.5 2.5 No 0.5 2,13 1824 2.5 2.5 No No 0.5 5 1818 2.5 2.5 No No 0.5 2,13 1825 2.5 No 0.5 5,13 1826 2.5 2.5 No 0.5 5,13 1827 2.5 2.5 No 0.5 5,13 1830 2.5 2.5 2.5 No 0.5 5,13 1831 2.5 2.5 No 0.5 5,13 1832 2.5 2.5 No 0.5 5,13 1833 2.5 2.5 No No 0.5 5,13 1836 2.5 2.5 2.5 No 0.5 5,13 1837 2.5 2.5 No No 0.5 5,13 1839 2.5 2.5 No No 0.5 5,13 1830 2.5 2.5 2.5 No No 0.5 5,13		2.5					
1790 No 2.5 2.5 No No 0.5 5 1791 2.5 2.5 No 2.5 No 0.5 5 1796 2.5 No 2.5 No 0.5 5 1800 2.5 2.5 2.5 No 0.5 5 1800 2.5 2.5 2.5 No 0.5 5 1802 2.5 2.5 No No 0.5 5 1802 2.5 2.5 No No 0.5 5 1803 2.5 2.5 No No 0.5 5 1804 2.5 2.5 2.5 No No 0.5 5 1806 2.5 2.5 2.5 No No 0.5 5 1807 2.5 2.5 2.5 No No 0.5 5 1808 2.5 2.5 2.5 No No 0.5 5 1810 2.5 2.5 2.5 No 0.5 5 1810 2.5 2.5 2.5 No 0.5 5 1810 2.5 2.5 2.5 No 0.5 5 1811 No 2.5 2.5 No 0.5 5 18124 2.5 2.5 No No 0.5 5 1824 2.5 2.5 No 0.5 5 1825 2.5 No 0.5 5 1826 2.5 No 0.5 5 1827 2.5 No 0.5 5 1828 2.5 2.5 No 0.5 5 1829 2.5 2.5 No 0.5 5 1830 2.5 2.5 2.5 No 0.5 5 183							
1991 2.5 2.5 2.5 No			2.5	No			413
1796 2.5 No 2.5 No 0.3 5,13 1799 2.3 2.5 2.5 2.5 No 0.5 5 1800 2.5 2.5 2.5 2.5 No 0.5 5 1802 2.3 2.5 No No No 0.5 1803 2.3 2.5 No No No 0.5 1804 2.5 2.5 2.5 No No No 0.5 1806 2.5 2.5 2.5 No No No 0.5 1809 2.5 2.5 2.5 No No No 0.5 2,5,13 1810 2.5 2.5 2.5 No No No 0.5 5,13 1810 2.5 2.5 2.5 No No 0.5 5,13 1810 2.5 2.5 2.5 No 0.5 5 1811 No 2.5 2.5 2.5 No 0.5 5 1814 2.5 2.5 2.5 No 0.5 5 1815 2.5 2.5 No 0.5 5 1816 2.5 2.5 No 0.5 5 1817 2.5 2.5 No 0.5 5 1828 2.5 2.5 No 0.5 5 1829 2.5 2.5 No 0.5 5 1820 2.5 2.5 No 0.5 5,13 1820 2.5 2.5 No 0.5 5,13 1820 2.5 2.5 2.5 No 0.5 5,13 1821 2.5 2.5 2.5 No 0.5 5,13 1822 2.5 2.5 No 0.5 5,13 1823 2.5 2.5 No 0.5 5,13 1830 2.5 2.5 2.5 No 0.5 5,13	1790			2.5			4,3
1799							
1802 2.5 2.5 No No 0.5 1803 2.5 2.5 No No 0.5 1804 2.5 2.5 2.5 No 0.5 5 1808 2.5 2.5 2.5 No 0.5 2.5.13 1809 2.5 2.5 2.5 No 0.5 5,13 1810 2.5 2.5 2.5 No 0.5 5 1811 No 2.5 2.5 No No 0.5 5 1814 2.5 2.5 2.5 No 0.5 5 1816 2.5 2.5 No 0.5 5 1818 2.5 2.5 No 0.5 2,13 1824 2.5 2.5 No 0.5 5,13 1820 2.5 2.5 No 0.5 5,13 1820 2.5 2.5 2.5 No 0.5 5,13 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3,13</td>							3,13
1802 2.5 2.5 No No 0.5 1803 2.5 2.5 No No 0.5 1804 2.5 2.5 2.5 No 0.5 5 1808 2.5 2.5 2.5 No 0.5 2.5.13 1809 2.5 2.5 2.5 No 0.5 5,13 1810 2.5 2.5 2.5 No 0.5 5 1811 No 2.5 2.5 No No 0.5 5 1814 2.5 2.5 2.5 No 0.5 5 1816 2.5 2.5 No 0.5 5 1818 2.5 2.5 No 0.5 2,13 1824 2.5 2.5 No 0.5 5,13 1820 2.5 2.5 No 0.5 5,13 1820 2.5 2.5 2.5 No 0.5 5,13 <td></td> <td></td> <td>2.5</td> <td>2.3</td> <td></td> <td></td> <td>.</td>			2.5	2.3			.
1802 2.5 2.5 No No 0.5 1803 2.5 2.5 No No 0.5 1804 2.5 2.5 2.5 No 0.5 5 1808 2.5 2.5 2.5 No 0.5 2.5.13 1809 2.5 2.5 2.5 No 0.5 5,13 1810 2.5 2.5 2.5 No 0.5 5 1811 No 2.5 2.5 No No 0.5 5 1814 2.5 2.5 2.5 No 0.5 5 1816 2.5 2.5 No 0.5 5 1818 2.5 2.5 No 0.5 2,13 1824 2.5 2.5 No 0.5 5,13 1820 2.5 2.5 No 0.5 5,13 1820 2.5 2.5 2.5 No 0.5 5,13 <td>1800</td> <td></td> <td></td> <td>1.3</td> <td></td> <td></td> <td>•</td>	1800			1.3			•
1803 2.5 2.5 No No 0.5 1804 2.5 2.5 2.5 No 0.5 5 1808 2.5 2.5 2.5 No 0.5 2.5.13 1809 2.5 2.5 2.5 No 0.5 5,13 1810 2.5 2.5 2.5 No 0.5 5 1811 No 2.5 2.5 No No 0.5 5 1814 2.5 2.5 2.5 No 0.5 5 1816 2.5 2.5 2.5 No 0.5 5 1818 2.5 2.5 No 0.5 2,13 1824 2.5 2.5 No 0.5 3,13 1826 2.5 No 2.5 No 0.5 5,13 1820 2.5 2.5 2.5 No 0.5 5,13 1832 2.5 2.5 2.5		2.3	2.3			0.3	•
1804 2.5 2.5 2.5 No 0.5 \$ 1808 2.5 2.5 2.5 No 0.5 2.5,13 1809 2.5 2.5 2.5 No 0.5 \$ 1810 2.5 2.5 2.5 No 0.5 \$ 1811 No 2.5 2.5 No No 0.5 \$ 1814 2.5 2.5 2.5 No 0.5 \$ \$ 1816 2.5 2.5 2.5 No 0.5 \$ \$ 1818 2.5 2.5 No No 0.5 \$ \$ 1824 2.5 2.5 No 0.5 \$		2.5	2.3				
1808 2.5 2.5 2.5 No 0.5 2.5.13 1809 2.5 2.5 2.5 No 0.5 5,13 1810 2.5 2.5 2.5 No 0.5 5 1811 No 2.5 2.5 No No 0.5 5 1814 2.5 2.5 2.5 No 0.5 5 1 1816 2.5 2.5 2.5 No 0.5 5 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td>							•
1809 2.5 2.5 2.5 No 0.5 \$,13 1810 2.3 2.5 2.5 No 0.5 \$ 1811 No 2.5 2.5 No No No 1814 2.5 2.5 2.5 No 0.5 \$ 1816 2.5 2.5 2.5 No 0.5 \$ 1818 2.5 2.5 No No 0.5 \$ 1824 2.3 2.5 2.5 No 0.5 \$ 1826 2.5 No 2.5 No 0.5 \$ 1826 2.5 No 2.5 No 0.5 \$ \$ 1820 2.5 2.5 2.5 No 0.5 \$ \$ \$ 1832 2.5 2.5 2.5 No 0.5 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1804						2.5.13
1810 2.3 2.5 No 0.5 5 1811 No 2.5 2.5 No No 1814 2.5 1.5 2.5 No 0.5 1816 2.5 2.5 2.5 No 0.5 5 1818 2.5 2.5 No No 0.5 2,13 1824 2.3 2.5 2.5 No 0.5 3,13 1826 2.5 No 2.5 No 0.5 5,13 1830 2.5 2.5 2.5 No 0.5 5,13 1832 2.5 2.5 2.5 No 0.5 5,13 1837 2.5 2.5 2.5 No 0.5 5,13 1838 2.5 2.5 2.5 No 0.5 5,13 1906 2.5 2.5 2.5 No 0.5 5,13 1908 2.5 2.5 2.5 No		4.3					
1811 No 2.3 2.5 No No 1814 2.3 2.3 2.5 No 0.3 1816 2.5 1.5 2.5 No 0.5 5 1818 2.5 2.5 No No 0.5 2,13 1824 2.5 2.5 2.5 No 0.5 3 3,13 1826 2.5 No 2.5 No 0.5 5,13 1830 2.5 2.5 2.5 No 0.5 5,13 1832 2.5 2.5 2.5 No 0.5 5,13 1837 2.5 2.5 2.5 No 0.5 5,13 1838 2.5 2.5 2.5 No 0.5 5,13 1906 2.5 2.5 2.5 No 0.5 5,13 1908 2.5 2.5 2.5 No 0.5 2,13						0.5	3
1814 2.5 2.5 No 0.5 1816 2.5 2.5 No 0.5 5 1818 2.5 2.5 No No 0.5 2,13 1824 2.5 2.5 2.5 No 0.5 3,13 1826 2.5 No 2.5 No 0.5 5,13 1820 2.5 2.5 2.5 No 0.5 5,13 1832 2.5 2.5 2.5 No 0.5 5,13 1837 2.5 2.5 2.5 No 0.5 5,13 1838 2.5 2.5 No No 0.5 2,13 1906 2.5 2.5 2.5 No 0.5 2,13 1908 2.5 2.5 2.5 No 0.5 2,13							•
1816 2.3 2.5 No 0.5 3 1818 2.5 2.5 No No 0.5 1824 2.5 2.5 2.5 No 0.5 1826 2.3 No 2.5 No 0.5 5.13 1830 2.5 2.5 2.5 No 0.5 5.13 1832 2.5 2.5 2.5 No 0.5 5.13 1837 2.5 2.5 2.5 No 0.5 5.13 1838 2.5 2.5 2.5 No 0.5 2.13 1906 2.5 2.5 2.5 No 0.5 2.13 1908 2.5 2.5 2.5 No 0.5 2.13				15			
1818 2.5 2.5 No No O.5 2,13 1824 2.5 2.5 2.5 No O.5 1826 2.3 No 2.5 No O.5 1820 2.3 2.5 2.5 No O.5 5,13 1830 2.3 2.5 2.5 No O.5 5,13 1831 2.3 2.5 2.5 No O.5 5,13 1837 2.5 2.5 No O.5 5,13 1837 2.5 2.5 No O.5 5,13 1838 2.5 2.5 No No O.5 5,13 1838 2.5 2.5 No No O.5 5,13 1838 2.5 2.5 No No O.5 5,13 1906 2.5 2.5 2.5 No O.5 5,13 1908 2.5 2.5 2.5 No O.5 2,13		4.3 2.6					5
1824 2.5 2.5 2.5 No 0.5 1826 2.3 No 2.5 No 0.5 5.13 1820 2.3 2.5 2.5 No 0.5 5.13 1822 2.3 2.5 2.5 No 0.5 5.13 1827 2.5 2.5 No 0.5 5.13 1837 2.5 2.5 No 0.5 5.13 1838 2.5 2.5 No No 0.5 5.13 1838 2.5 2.5 No No 0.5 5.13 1906 2.5 2.5 2.5 No 0.5 5.13 1908 2.5 2.5 2.5 No 0.5 2.13							2.13
1826 2.5 No 2.5 No 0.5 5,13 1830 2.5 2.5 2.5 No 0.5 5,13 1832 2.3 2.5 2.5 No 0.5 5,13 1837 2.3 2.5 2.5 No 0.5 5,13 1838 2.5 2.5 No No 0.5 5,13 1838 2.5 2.5 No No 0.5 2,13 1906 2.5 2.5 2.5 No 0.5 5,13 1908 2.5 2.5 2.5 No 0.5 2,13					• -		-144
1830 2.5 2.5 No 0.5 5,13 1832 2.5 2.5 No 0.5 5,13 1837 2.5 2.5 No 0.5 5,13 1838 2.5 2.5 No No 0.5 5,13 1838 2.5 2.5 No No 0.5 2,13 1906 2.5 2.5 2.5 No 0.5 5,13 1908 2.5 2.5 2.5 No 0.5 2,13	1844			2.5			5.13
1832 2.5 2.5 No 0.5 5,13 1837 2.5 2.5 No 0.5 5,13 1838 2.5 2.5 No No 0.5 2,13 1838 2.5 2.5 No No 0.5 2,13 1906 2.5 2.5 2.5 No 0.5 5,13 1908 2.5 2.5 2.5 No 0.5 2,13	1929						
1837 2.5 2.5 No 0.5 5,13 1838 2.3 2.5 No No 0.5 2,13 1906 2.5 2.5 2.5 No 0.5 5,13 1908 2.5 2.5 2.5 No 0.5 2,13							5,13
1838 2.5 2.5 No No 0.5 2,13 1906 2.5 2.5 No 0.5 5,13 1908 2.5 2.5 2.5 No 0.5 2,13			2.5 .				5,13
1906 2.5 2.5 2.5 No 0.5 5,13 1908 2.5 2.5 No 0.5 2,13							
1908 2.5 2.5 2.5 No 0.5 2,13			2.5			0.5	
1,000						0.5	
			2.5			0.5	-

	Glass or		Metal (not		Glass	
carthen ware	Plastic	aluminium)	Alyminium	ampoule	Particuler	
	IP.I	IP.2	IP.3	IĖ.3A	IP.8	packing
UN No.	(L)	(L)	(L)	(L)	(L)	requirements
2031	2.5	2.5	Na	No	0.3	2.13
2258	2.5	2.5	2.5	No	0.5	2,13
2306	2.5	2.5	2.5	No	0.5	2,5,13
2435	2.5	2.5	12.5	No	0.5	\$
2438	2.5	2.5	2.5	No	0.5	2,5,13
2439	No	2,5	2.5	No	No	
2443	2.5	2.5	2.5	No	0.5	2,5,13
2502	2.5	2.3	2.3	No	د.ه	-10110
2364	2.3	2.3	2.5	No	0.5	2,5,13
2672	3	5	10	No	0.5	4,3,13
2677	2.5	2.5	2.5	No	0.5	
2679	2.5	2.5	A-3	No	0.5	
2681	2.5	2.5	2.5	No	0.5	
2789	2.5	2.5	2.5	2.5	0.5	2,5,7,13
2790	2.5	2.5	2.5	2.5	0.5	5,7.13
2796	. 2.5	2.5	2.5	No	. 0.5	5,13
2797	2.5	2.5	2.5	No	0.5	
2817	No	2.5	2.5	No	No	
2837	2.5	2.5	2.5	No	0.5	

Outer

Steel drum = 1A2
Aluminium drum = 1B2
Steel jerrican = 3A2
Plywood drum = 1D
Fibre drum = 1G
Plastic drum = 1H2

Plastic jerrican - 3H2
Wooden box - 4C1, 4C2
Plywood box - 4D
Reconstituted wood box - 4F
Fibreboard box - 4G


Single packagings:

UN No.	Sidel drume IAI and cylinders*	Aluminium drums IBI	Steel jerricans JAI	Plastic drums t H t	Plastic jerricens 3H1	Composites (plessic) — all	Perticular packing requirements
1715	Yes	Yes	Yes	Yes	Yes	Yes	5.7
1719	Yes	No	Yes	Yes	Yes	Yes	
1724	Yes	No	Yes	No	No	Yes	5
1728	Yes	No	Yes	No	No	Yes	5
1732	Yes	Yes	Yes	No	No	Yes	5,7
1740	Yes	No	Yes	Yes	Yes	Yes	
1747	Yes	No	Yes ·	No	No	Yes	5
1750	Yes	No	Yes	Yes	Yes	Yes	5 5
1753	Yes	No	Yes	No	No	Yes	5
1762	Yes	No	Yes	No	No	Yes	5
1763	Yes	No	Yes	No	No	Yes	<i>5</i> 5 5 5
1764	Yes	No	Yes	Yes	Yes	Yes	Š
1765	Yes	No	Yes	Yes	Yes	Yes	3
1766	Yes	No	Yes	No	No	Yes	\$
1767	Yes	No	Yes	No	No	Yes	5
1766	Yes	No	Yes	No	No	Yes	5
1769	Yes	No	Yes	No	No	Yes	\$
1771	Yes	No	Yes	No	No	Yes	5
1775	Yes	No	Yes	Yes	Yes	Yes	5 5 5 5 5
1776	Yes	No	Yes	Yes	Yes	Yes	5
1778	Yes	No	Yes	Yes	Yes	Yes	\$ \$ \$ \$
1721	Yes	No	Yes	Yes	Yes	Yes	5
1782	Yes	No	Yes	Yes	Yes	Yes	5
1784	Yes	No	Yes	No	No	Yes	5
1787	No	No	No	No	No	Yes	
1788	No	No	No	No	No	Yes	
1789	No	No	No	Yes	Yes	Yes	
1790	Yes	No	Yes	Yes	Yes	Yes	5
1791	Yes	No	Yes	Yes	Yes	Yes	5
1796	Yes	No	Yes	No	No	No	\$ \$ \$ \$
1799	Yes	No	Yes	No	No	Yes	5
1800	Yes	No	Yes	No	No	Yes	5

^{*} Cylinders must be as permitted in Packing Instruction 200

PACKING INSTRUCTION \$13 (cont.)

UN No.	Steel drums IAI and cylinders*	Aluminlum drums 181	Sieel jerricans 3A1	Plastic drums IHI	Plastic Jerricans 3H1	Composites (planic) – all	Particular packing requirements
1801	Yes	No	Yes	No.	No	Yes	5
1803	No	No.	No	No	No	Yes	
1804	Yes	Na	Yes	No	No	Yes	5
1608	Yes	No .	Yes	Yes	Yes	Yes	\$
1809	Yes	No	Yes	Yes	Yes	Yes	\$ \$ \$
1810	Yes	No	Yes	Yes	Yes	Yes	5
1811	Yes	No	Yes	Yes	Yes	Yes	
1614	Yes	No	Yes	Yes	Yes	Yes	
1816	Yes	No	Yes	No	No	Yes	5
1818	No	No	No	Yes	Yes	Yes	
1824	Yes	No	Yes	Yes	Yes	Yes	
1826	Yes	No	Yes	No	No	No	5
1830	Yes	No	Yes	Yes	Yes	Yes	\$ \$ \$ \$ \$
1832	Yes	No	Yes	Yes	Yes	Yes	5
1837	Yes	No	Yes	Yes	Yes	Yes	5
1436	Yes	No	Yes	Yes	Yes	Yes	5
1906	Yes	No	Yes	Yes	Yes	Yes	5
1906	No	No	No	Yes	Yes	Yes	
1940	Yes	No '	Yes	Yes	Yes	Yes	
2258	Yes	No	Yes	Yes	Yes	Yes	
2308	Yes	No	Yes	Yes	Yes	Yes	\$
2435	Yes	No	Yes	No	No	Yes	٠ 5
2438	Yes	No	Yes	Yes	Yes	Yes	5
2439	Yes	No	Yes	Yes	Yes	Yes	
2443	Yes	No	Yes	No	No	Yes	5
2502	Yes	No	Yes	Yes	Yes	Yes	
2364	Yes	No	Yes	Yes	Yes	Yes	5
2672	Yes	Na	Yes	Yes	Yes	Yes	
2677	Yes	No	Yes	Yes	Yes	Yes	
2479	Yes	No	Yes	Yes	Yes	Yes	
2681	Yes	No	Yes	Yes	Yes	Yes	
2789	Yes	Yes	Yes -	Yes	Yes	Yes	5,7
2790	Yes	Yes	Yes	Yes	Yes	Yes	5,7
2796	Yes	No	Yes	Yes	Yes	Yes	\$
2797	Yes	No	Yes	Yes	Yes	Yes	
2817	Yes	No	Yes	Yes	Yes	Yes	
2837	Yes	No	Yes	Yes	Yes	Yes	

Purixular packing requirements:

- Plastic inner packagings must be packed in tightly closed metal receptacles before packing in outer packagings.
- 5 Seed packagings must be corrosion-resistant or with protection against corrosion.
- 7 When aluminium or aluminium alloys are used they must be resistant to corrotion.
- Glass inner packagings and glass ampoules must be packed with absorbers material in tightly closed metal receptactes before packing in outer packagings.
- 21 If free from hydrofluoric acid then glass inner packagings are permitted.

^{*} Cylinders must be as permitted in Packing Instruction 200

Blank

APPENDIX C

Extract of Information on Polyetheretherketone (PEEK) Provided by ICI Advanced Materials/LNP Engineering Plastics Exton, PA

Properly	ASTM Test Method	บกกร	255K 450G	PEEK 450GL20	PEEK 4503L30	PEEK 460CA30
GENERAL PROPERTIES						
Form	-	-	Granular	Crecular	Granular	Granular
lensity (crystatine) (amorphous)	9792	8\cw ₂	1 32 1 265	1 43	1 49	1.44
laingryiiogs,	_	_	Grey	Brown	Brown	Biack
iller content	_	*	-	20	30	30
voical level of crystailinity	-	%	35	35	35	35
recessing temperature range	~	•c	350-369	350-400	370-400	370-40C
•		(°F)	(860-715)	(660—715)	(860—715)	(860—715)
Vater absorption 24 hours 23°C(73°F)	0570	*,	0.5	_	9.11	0.06
Equilibrium 23°C(73°F)	0570	•	0.5	-	_	-
fould shrinkage	-	¥.	1.1	0.7*-1.4	0.5	0.1*—1.4
MECHANICAL PROPERTIES	3			<u>-</u>		
lexura! modulus 23°C(73°F)	0790	GPa(pai)	3.68(530,800)	5.86(965.900)	10.31(1495.200)	
lexural modulus 250°C(480°F)	0790	GPa(pai)	0 3(43,500)	1.2(174,000)	2.3(333.500)	3 6(522,100)
lexural atrength 23°C(73°F)	0790	MPa(psl)	170(24,700)**	192(27,800)	233(33,800) 70.8(10,500)**	318(48,100) @ 105 2(15,200)*
lexural strength 250°C(480°F)	2790	MPa(psi)	12.5(1.800)**	53.7(7,500)**		208(B)(30.20C
ensile strength 23°C(73°F)	9638 9638 Teat annual	MPs(psi)	32(Y)(13,300) 12(Y)(1,700)	123(8)(17.800) 24(7)(3.500)	157(3)(22,500) 34(8)(4,900)	43(8)(6,200)
reak or yield 250°Cl480°F)	0638 Test speed 5 mm/min.	MPa(psi)	12(11(1.1 34)	en tracour	→.=;(4,900 ;	13(0)(0,230)
A CONTRACTOR OF THE CONTRACTOR	(0.2 in/min)	••	50	2.5	2.8	13
longation at break 23°C(73°A)	D636 Tast speed 5 mm/min	56	39	4,5	4.4	,,
	(0.2 In/min)	•				
longation at yield 23°C(73°F)	0630 Test speed 5 mm/min	*	4 9	-	_	-
	(0.2 in/min)		65.40.000		*****	97(14,100) #
hear strength (ultimate)	D3846	MPa(psl)	95; 13,800;	_	87(14,100) 2,40(348,000)	3/ (14, (00)
hear modulus 23°C(73°F)		GPa(pai)	1.30(188,500)	7 0(1015-200)	9.7(1408,800)	13(1886.40C)
ensile modulus 1% secant 23°C(73°F)	0636	GPa(psi)	3 8(522,100) 118(17,100)	-82(23 SOC)	215(31,200)	240(34,800)
Compressive strength 23°C(73°F): 0°	2695 2695	MPA(psi)	119(17,100)	:34(19.40C)	149(21 500)	·\$3,22,200
Compressive strangth 23°C(73°F): 90° Tharpy impact strangth 23°C(73°F)	85 2782	MPa(psi)	110(.7,300)	134 (8.50)		
	Method 351A	16.1 mg	34.9	_	11.3	7.8
2 mm(0,080 in) notch radius	-	KJ/m²	(6.65)	_	(0.22)	(0.15)
8.05	_	K1/W ₂ (U-i5/in)	8 2	_	29	5.4
0.25 mm(C.31C in) noten radius	_	(#-Ib/in)	(0.13)	_	(0.17)	(0.1)
rod impact strength 23°C(73°F)	0256	facion in	19.10/		,	,
lotehad (0.25 mm radius, 2.5 mm depth)		J/m	83	86	96	85
Manual (A.10 Little (String) T.5 Little Ashart	_	(ft-lb/in)	(1.55)	(1.91)	(1.8)	(1.6)
(0,010 in radius, 0.100 in depth)		(14 100 11)	(*.55)	(*****		,
rectaned		J/m	No break	673	725	749
;;; 4.6 144		(fi-lb/ln)		(12.6)	(13.6)	(14.0)
plasons ratio 23°C(73°F)	0636	-	0.42	-	0.45	_
ockwell hardness	-					
R scale	0766	-	125	125	'24	124
M scale	0785	-	59	192	103	197
THERMAL PROPERTIES						
felting point		°C(°F)	334(633)	334(833)	324(633)	334(633)
iass transition ismosrature	-	°C(°F)	143(289)	143(282)	143(269)	143(288)
pecific heat	-	cal/g °C	0.32	- '	=	-
oefficient of thermal expansion	0696	m/m/*C	47 x 10°° 108 x 10°° at >150°C	24 x 10 ⁻⁴	22 x 10°	15 × 10**
set distortion temperature 1.62 MPs	0648	*C(*F)	(>300°F) 180(329)	285(545)	315(60C)	115(90C)
(264 lbf/in²)		• •				
hermel conductivity	C177	W/m°C	0 25 - 🗳	0.41	0.43	0.92
faximum continuous service	-	*C(*F)	250(480)	250(480;	250(480)	250(480)
emperature (Estimated IL-Dased test)						

in Mould shrinkage is dependent on flore orientation and the lower figure refers to strinkage in the direction of flore chontation.

^{**} yield value at > 5% strain.

^{(3) =} Sreak (Y) = Yield

Property	Fest Methau	Uñils	peek 450g	FEEK 450GL20	PEEK 450GL30	765k 4660a30
FLAMMABILITY PROPER	TIES					
Flammability Rating						
1 45mm(0.057 In) thick sample	UL\$4	-	Y -0	V-3 ■	6-A	V-0
imiting Oxygen Index						
l.4 mm(0.015 ki) thick sample l.2 mm(0,125 ki) thick sample	ASTM 02863 ASTM 02863	÷r 0 ₁ *s 0 ₂	24 35	<u>-</u>	_	<u>-</u> . -
'emperature index						
I.2 mm(0.125 in) thick sample	Sased on ASTM 02863	"ଓ("ନ)	>325>615;	-		-
Imoke Density (DM)c	-					
L2 mm(0 125 in) thick sample:	HBS Smoke	_	19	Ŷ	_	5
isming mode non-flaming mode .5 mm(0.062 in) thick sample:	Chamber NBS Smoke	_	2 50	2	_	:
laming mode non-flaming mode	Grambe:	_	5 5	_	_	_
Time to 90% (DM)c						
1.2 mm(0 125 in) Haming mode	NBS Smoke	:Min	:8	19	_	19
thick sample: 12 mm(0,125 in) non flaming mode flick sample:	Chamber	#in	196	-	-	
K1.5 Min) Value						
Flaming Icn-flaming	NBS Smoke Chamber	-	0	9 0	<u>-</u>	ΰ 0
0(4 Min) Valus						
flaming Ion-flaming	NBS Smoke Chamber	-	:	1 G	_	0 C
Toxicity Index 0 g(0.02 lbe) sample						
0	NES 713		0.074	0.065	-	0.051
CO ₂ Fotal for all gases tested	on Cable	-	0 14e G.22	0 124 3.19	_	0.123 0.17
ELECTRICAL PROPERTIES	<u> </u>			• • • • • • • • • • • • • • • • • • • •	-	
Dielectric strength	ASTM 0149	KV/em	190	_		-
Comparative tracking index 23°C	(50µ film) 2 3638	Volts	150	-	175	_
(73°F) oss tangent 23°C(73°F) 1Hz folume resistivity 23°C(73°F)	8 S 2782 02 S 7	ohm-cm	6 003 4 8 x 10 ¹⁶	-	-	14 x 10°
'ermittivity						
0 Hz-10 KHz, 0-150°C(32-300°F) 0 Mz - 200°C(390°F)	85 2782 85 2782	•	3.2-3.3 4.5	-	-	-

[■] Estimated Value

3 Summary of Chemical Resistance

"Victics: PEEK exhibits excellent resistance to a wide rengolof organic and inorganic chamicals

The compatibility of Victrex PEEK with many chemicals at 2010 (66°F) has been investigated and the results for unreinforced grades are given in Table 1

These results are derived from tests in which unstressed specimens were completely immersed in a wide range of chemical environments at room temperature. They may differ considerably from those found in

service, especially in the offects of strasses and strains set up during fabrication, and of elevated temperatures. These conditions particularly those of stress and strain are difficult to reproduce in the appraising Table 1, therefore, should de used only as a guida, and the user should satisfy himself beforehand of the suitability of 'Victrey' PEEK for the in-service environment

Some results at higher temperatures are available; these are given in Table 2.

Table 1 The Chemical Resistance of Unreinforced 'Victrex' PESK 450G at 20°C (68°F)

Chemical	Retino	Chemical			dng
		Land and South a deal in the	and the same of th	And the second second	, ;
Acetaldehyde	A	Ethane	A		Á
cette acid	Â	Ethano!	A		5
lcatons	Ä	Ethyl acetate	Α	Nitropenzana	F
kcetonitrije	Ã	Ethyl alcoho!		Nitrogen	4
	Ā	Ethylene oxida	Â		F
Acrylic acld Aluminium sulphate	Ā	Paritie evide		•	
lammonia, anhydrous	Â	Ferric oxide	A	Oxygen	
Ammonia (Ilquid)	<u> </u>	Farric suiphate	A	Ozene	2
	Ā	Fluorina	C		
Ammonium hydroxide conc.	Ĝ	Formic acid	š	Paraffin	þ
/qua-regia	J	Formalin	_	Pentane	
		Formann		Perchicipethylene	1
enzene	A	Can (admiral)	A		1
Benzoic acid	Ą	Gas (natural)		Pheno! (conc)	, (
Benzaldehyde	A	Gas (manufactured)	7	Phosphoric acid (10%)	
3romine/dibromoethane	Č	Gascline (sout)	Ä		į
Bromine (dry)	Č	Glycols	^	Phosphoric acid (80%)	,
3rçmine (wet)	Ç	_			,
Boric acia	Á	Heptane	Ą	· · · · · · · · · · · · · · · · · · ·	
Sutane	A	Hexane	Ą		•
		Hydraulic oil	Ą	Fotassium hydroxide (dilute)	<i>;</i>
Calcium carbonate	Α	Hydrochloric acid		Potassium hydroxide (70%)	7
Calcium chloride	A	Hydrobromic acld	Ç	Potașsium sulphate	
Calcium hydroxide	А	Hydrofluoric acid	C	Propane	,
Carbolic acid	Α	Hydrogen peroxide	A	· · - - - - - - - - - 	
Carbonic acid	Α	Hydrogen suiphide (gas)	A		
Carbon dloxide (dry)	Α	, •		Sodium (hot)	•
Carbon tetrachionde	A	lodine	3	Sodium carbonate	
Chlorinated solvents	8	lso-octane	А	Sodium nydroxide	•
Chiorine (gas)	Ă			Sodium hypochlorite	
Chiorine (liquid)	C	Kerosine	А	Styrene (iiquid)	
Chiorobenzene	Ă	Ketones	A	Sulphur hexafluoride (gas)	1
Chlorotom	Â	, 10.0		Sulphuric acid (up to 40%)	
Crude oli	Â	Lactic acid	A		
<u> </u>	Â	200110 44.0	•		
Cyclohexane Chromic acid (40%)	Â	Magnesium chioride	9	Tetraethyl lead	
	3	Magnesium hydroxide		Toluene	
Chiorine water (sat)	•	Maleic acid	Ä		
B. Jahraha Jahan	A	Methane		1.1.1 Trichloroethane	
Diethylamine	Ã	Methanoi	Ä		
Diethyr ether	, ,	10.00	Â		
Dimethylformamide	A	Methyl alcohol	Â		
Diphenyi sulphone	5	Methyl ethyl ketone	<u> </u>	· · - · ·	
		Methylene chloride	^	Xylene	
		•		•	
				Zine chloride	
				Zinc sulphate	

A = No attack, Little or no absorption.

B = Slight attack: Satisfactory use of 'Victrex' PEEK will depend on the application
C = Severe attack: 'Victrex' PEEK should not be used for any application where these chemicals are present

5 Resistance to **Inorganic Chemicals**

Victrex PEEK shows excellent resistance to inorganic chemicals and exhibits good retention of mechanical properties after long term exposure

Unreinforced grades of Victrex PEEK are very resistant to attack by inorganic chemicals. At high temperatures, they are affected to some extent by strong acids and alkalis, including sulphuric acid, sodium hydroxide and ammonia.

Acids can cause embrittlement but have little effect on stiffness. Both acids and alkalis may result in some loss of tensile strength. Glass libre reinforced grades of 'Victrex PEEK are more resistant to acidic chemicals than are unreinforced grades. On the other hand, strong alkalis have a more cronounced effect on glass tibre :einforced grades, causing changes in weight and dimensions, as well as a reduction in mechanical properties in the most extreme cases

The bearing grade, 'Victrex' PEEK 450FC30, is more chemically

resistant than either the glass flord raintorded or unraintorded squivalents. Physical changes and changes in mechanical properties are minimal. As with the glass folloreinforced grades, the effect of strong aikalis is more pronounced. then that of acids

The effect of various inorganic chemicals on the physics; and mechanical properties of unreinforced and reinforced grades of "Victrex" PEEK is shown in Tables 6 - 15.

Table 6 Weight and Dimensional Changes of 'Victrex' PEEK 150G after immersion in inorganic Chamicals for Seven Days at 200°C (420°F)

Environment	Weight change	Change in dimensions %				
		*	y	2		
Phosphoric acia (50%)	+0.7	N/C	N/C	N/C		
Sulphuric acid (50%)	+0.5	-0.3	-C.8	N/C		
Sodium hydroxide solution (50%)	+113	-0.5	-05	+2.0		
Liquid ammonia	+0.8	+0.1	+0.2	+0.7		
Sulphur dicxide gas	-0.5	-0.2	N/C	N/C		
Hydrogen sulphide gas	N/C	-0.4	-0.1	÷0.1		
Carbon monoxide gas	-0.1	-0.5	-0 1	-0.3		
Ammonia gas	-0.1	-0.1	-0.6	WC		

N/C = No change

Table 7 Effect on Mechanical Properties of 'Victrex' PEEK 1500 of Immersion in Inorganic Chemicals for Seven Days at 200°C (420°F)

v = elong flow direction
 y = 90° to flow direction
 z = through thickness direction

Environment	Tensile strungth MPe (pel)	Retention of a criginal value %	Flexurei modulus GPs (pel)	Retention of original value %	Elongation at break %	Retention of original value %
Presphoric acid (50%)	108 (15,650)	103	3.4 (493.000)	92	5 .1	;បា
Sulphuric acid (50%)	66 (9.570)	ස	4.3 (823,500)	118	2.0	43
Sodium hydroxide scin. (50%)	63 (9.089)	5 5	2.5 (380,024)	64	7.3	71
Liquid ammonie	87 (12.58*)	90	3 7 (537.600)	96	g 4	91
Sulphur dioxide ges	105 (*5.217)	108	4.0 (582,400)	104	49	47
Hydrogen suiphida gas	108 (15.640)	!11	4 0 (582,400)	i C 5	5 .1	?8
Carbon monoxide gas	104 (15.168)	108	3 9 (571,200)	102	ė 3	61 .
Ammonia gas	106 (15 359)	109	4 1 (588 000)	,0 2	36	35

Table 8 Weight and Dimensional Changes of 'Victrex' PEEK 150GL30 after immersion in inorganic Chemicals for Seven Days at 200°C (420°F)

Environment	Weight change	Che	Change in dimensions.%				
			, y	2			
Phosphoric acid (50%)	+06	N/Ç	N/C	NC			
Sulphuric acid (50%)	+0.7	NC	N/C	N/C			
Sodrum hydroxide solution (50%)	-44.2	-0.6	-6.5	-32.C			
Liquid ammonia	-0.6	NC	÷0.2	N/C			
Sulphur dioxide gas	N/C	N/C	N/C	-0.2			
Hydrogen sulphide gas	N/C	÷0.3	- 0.1	+0.4			
Carbon monoxide gas	-01	N/C	N/C	-0.1			
Ammenia gas	-0.1	+C.1	-0.2	N/C			

NVC = No change

x = stang flow director y = 90° to flow direction z = through thickness direction

Table 9 Effect on Mechanical Properties of 'Victrex' PEEK 150GL30 after immersion in Inorganic Chemicals for Seven Days at 200°C (420°F)

Environment ,	Tensile strength MPa (oel)	Retention of ortginal value ≥.	Flexural modulus (2Pg (pal)	Rétention of entgines Petus %	Congation at areas V	Ficiantion of Carlyina your fa-
Phosphoric acid (50%)	139 (20:55)	84	9.8 (1,276,000)	90	2.5	27
Sulphune seral (50%)	135 (19.575)	82	8.9 (1.290 500)	91	2.6	90
Sedium hydroxide scin. (50%)	97 (14.148)	51	8.8 (1,276.COO)	79	1,4	55
Liquid ammonia	142 (20,609)	74	10.8 (1,561,700)	97	f §	73
Sulphur cioxide gas	176 (25,522)	92	11.5 (!.674,400)	104	2;	Š!
rfydrogen suiph de gas	178 (25,900)	93	11 2 (1,626 000)	101	2.1	ડા
Carbon monoxide gas	173 (25,065)	90	12 (1 754 900)	.09	20	75
4:ггола раз	118 (25 900)	93	11 5(1 574 400)	104	-	32

6 Resistance to Organic Chemicals

Secause of its semi-crystalline nature 'Victrex' PEEK offers excellent resistance to organic chemicals and commonly used solvents and exhibits good retention of mechanical properties after long term exposure. At high temperatures, some reagents will have an effect on weight, dimensions and mechanical properties; in

particular methyl ethyl ketone and nitrobenzene can have a significant effect on weight and dimensions, and result in plasticisation of the polymer

Glass fibre reinforced grades are tess affected and the bearing grade 450FC30 even less so.

The effect of some organic chemicals on the physical and mechanical properties of "Victrex" PEEK is shown in Tables 1 6 - 25

Table 18 Weight and Dimensional Changes of 'Victrex' PEEK 150G after Immersion in Organic Chemicals for Seven Days at 200°C (420°F)

Environment	Weight change	Che	enge in dimensions %		
			y.	Z.	
Acetic acid (pure)	+2.2	-0.2	+ 0.3	+2.2	
Ethylene glycol	÷2.5	+02	N/C	N/C	
Matnyi etnyi ketone	+ 5. 6	· +0.9	÷2 0	+3.2	
Nitrobanzene	+15.6	÷2.8	+54	+8.6	
Methane	-0.4	-0.3	-0.1	N/C	

N/C = No change

x = along flow direction
y = 90° to flow direction

3 = through injektions areased

Table 17 Effect on Mechanical Properties of 'Victrex' PEEK 150G of immersion in Organic Chemicals after Seven Days at 200°C (420°F)

Environment	Tenelle etrength MPs (pst)	Reterrition of original value %	Flexurei moculus GPE (pel)	Reterition of original Value %	Elongation at breek *	Retention of criginal value %
Aceto acid (pure)	108 (15,660)	102	3.5 (507,500)	95	9.9	152
Ethylene glycoi	a7 (12,615)	. 63	3.9 (565 500)	91	3 2	109
Methy' ethyl kalone	75 (10.675)	72	3 7 (\$36,500)	1 0 0	22 C	178
Nirogenzeno	57 (19.265)	55	1 5(217,500)	.11	56 8	⁻ 91
Manare	113(16,344)	: '6	4 0/582(400)	10 k	4 \$	4 5

7 Resistance to Refrigerants

Victrex' PEEK is resistant to attack by halogenated hydrocarbon solvents and refrigerants.

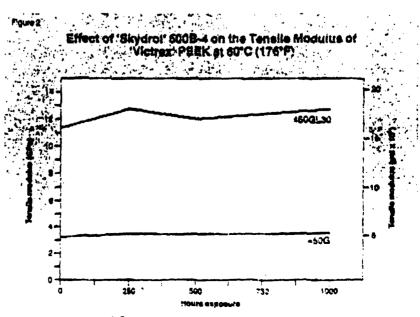
Table 26 Weight Change of 'Victrex' PEEK after Immersion in Various 'Arston' Refrigerants for Seven Days at 23°C (73°F)

Grade		Weight	change %	
	'Arcton' 11	'Arcton' 12	'Arcton' 22	'Arcton' 114
450G	0.0	-0.11	N/A	0.6
450GL30	-0.1	~0.05	0.0	0.0
450CA30	G.Q	÷0.05	+0.09	+0.07

N/A = Not available

Table 27 Percentage Change in Mechanical Properties of 'Victrex' PEEK after Immersion in 'Arcton' A134a' for Fourteen Days at 100°C (212°F)

Grade	Char	ge %
92.7.6	Tensile strength	Flexural modulus
450G	+9.3	+70
450G±30	+4.0	+0.4
450FC30	+10.0	-13.6


[&]quot;'Arcton' A134a is a novel "environment friendly" refrigerant developed by ICI.

8 Resistance to Aviation and Automotive Fluids

Both unreinforced and reinforced 'Victrex' PEEK show excellent resistance, even at elevated temperatures, to the majority of substances encountered in the aviation and automotive areas: they include hydrocarbon and mineral oils, greases and transmission fluids.

Resistance to Aviation Fluids

Victrex PEEK has excellent resistance to 'Skydrol' 5008-4 and LD4 hydraulic fluids as can be seen from Figures 2 - 5 and Tables 28 and 29.

APPENDIX D

Information on Polychlorotrifluoroethylene (CTFE) Provided by Allied Signal

ACLAR can be heat-sealed, laminated, printed, thermoformed, metallized, and sterilized. The unsupported and laminated varieties can be handled and processed on most common converting and packaging machinery.

Very few films combine so many desirable qualities as ACLAR. It is:

- Unsurpassed in moisture barrier protection; up to ten times more moisture protection than other clear, flexible films
- FDA recognized. Applicable regulation #21CFR177.1380. Drug Master File No. 1578.
- Crystal clear
- Chemically stable and biochemically inert
- Plasticizer and stabilizer free
- Transparent to ultraviolet radiation
- Nonflammable
- Nonstickina
- Non-aging
- Low in dielectric constant and dissipation; high in dielectric strength

Grades

ACLAR 22A is a copolymer film consisting primarily of CTFE. It is used primarily for pharmaceutical packaging applications. ACLAR 22A film thermoforms at a lower temperature than ACLAR 33C and may be formed on a vacuum forming machine. ACLAR 22A provides excellent moisture barrier properties. Standard product thicknesses include .0015" and .005".

ACLAR 88A is a copolymer film consisting primarily of CTFE. It is used primarily for pharmaceutical packaging applications as well. This product thermoforms at the same temperature and on identical equipment as ACLAR 22A. It is available in the thickness of .00075" only.

ACLAR 22C is a copolymer film consisting primarily of CTFE. It is used primarily as an encapsulating film for electroluminescent lamps and for clean room packaging. Standard product thicknesses include .002", .003", .005", .0075", and .01".

ACLAR 33C is a terpolymer film consisting primarily of CTFE. It is used primarily for military and pharmaceutical packaging applications. It thermoforms satisfactorily on equipment having a pre-heat station and a plug assist system. ACLAR 33C provides superior moisture barrier properties. It is available in standard thicknesses of .00075", .001", .002", .003", .005", and .0075".

ACLAR Laminations—Laminated structures containing various grades of ACLAR film are available for a variety of end-use applications. Please ask your ACLAR specialist for more details.

Typical Properties

ACLAR° CTFE film is a clear, flexible thermoplastic film with excellent dimensional stability. It is unsurpassed as a transparent packaging material for moisture sensitive products. Key physical and thermal properties of **ACLAR°** film products are summarized below.

		ACLAR 88A	ACLAR 22A	ACLAR 22C	ACLAR 33C	Test Method
Gauge, Mils (Microns)		.75 (19)	1.5 (38)	7.5 (190)	.75 (19)	!
Yield, Sq. In./Lb. (m²/Kg)		17,760 (25.25)	8880 (12.62)	1750 (2.49)	17,360 (24.68)	
Specific Gravity		2.10	2.10	2.11	2.12	ASTM D-1505
Haze, %		<1	<1	<1	<1	
Tensile Strength	MD, Psi (KPa)	7.0-10.0 x 10 ³ (48.3-69 x 10 ³)	7.5-11.0 x 10 ³ (51.7-75.9 x 10 ³)	4.0-6.0 x 10 ³ (27.6-41.4 x 10 ³)	9.5–11.5 x 10 ³ (65.5–79.3 x 10 ³)	ASTM D-882
	TD, Psi (KPa)	·	5.5-8.0 x 10 ³ (37.9-55.2 x 10 ³)	4.0-6.0 x 10 ³ (27.6-41.4 x 10 ³)		
Elongation, %	MD TD	150–250 200–300	115–225 200–300	200–300 200–300	50–150 50–150	ASTM D-882
Young's Mod.	MD, Psi (KPa)	140-160 x 10 ³ (97-110 x 10 ⁴)	140-160 x 10 ³ (97-110 x 10 ⁴)	130-160 x 10 ³ (90-110 x 10 ⁴)	190-200 x 10 ³ 131-138 x 10 ⁴)	ASTM D-882
	TD, Psi (KPa)	120-140 x 10 ³ (83.7-97 x 10 ⁴)	150-160 x 10 ³ (104-110 x 10 ⁴)	130-160 x 10 ³ (90-110 x 10 ⁴)	190-200 x 10 ³ (131-138 x 10 ⁴)	
Tear Strength-Init. (Graves), gm	MD TD	240 300	380 360	465 415	400 380	: 1
Tear Strength, Propagated (Elmendorf), gm	MD TD	24 24	40 130	>1600 >1600	12 33	ASTMD-1922
Impact Strength (Dart drop) Failure Weight, gm	s	93 (Method "A")	347 (Method "A")	1200 (Method "B")	<57 (Method "A")	ASTM-1709 "A"—26", 1.5" diam. dart (66 cm, 3.8 cm diam. dart)
		: 			:	"B" — 60", 2" diam. dart (152 cm, 5.1 cm diam. dart)
Dimensional Change, %	MD TD	+ 12 to + 15 - 12 to - 15	+ 12 to + 15 - 12 to - 15	≤2 ≤2	≤2.5 ≤2.5	ASTM D-1204 300°F (149°C) 10 min
Crystalline Melting Point	TM°F (°C)	361-367 (183-186)	361–367 (183–186)	361–367 (183–186)	396-400 (202-204)	
Abrasion Resistance Weight loss, mgs.	ce	14(A)	16(A)	7(A)	15(B)	Taber abraser "A"—CS 10 wheel 500 gm - 100 cycles "B"—CS 10F wheel 500 gm - 500 cycles
Therm. Conduct.	Cal-Cm/ Cm²-Sec-C°	5.3 x 10 ⁻⁴	5.3 x 10 ⁻⁴	5.3 x 10 ⁻⁴	4.7 x 10 ⁻⁴	
Flammability		Non Flam	Non Flam	Non Flam	Non Flam	·
Oxygen Index, %		100	100	100	100	ASTMD-2863

ermeapility

ACLAR has an outstanding ability to prevent the passage of water vapor and liquids. This means that **ACLAR** gives superb product protection and, because of its transparency, permits inspection viewing of the product at the same time. These combined properties have inspired imaginative new product designs for moisture-sensitive items.

	Water Vapor Transmissic Unsupported ACLAR Film	n Rato*	
	Gm/100 In. ² /24 Hrs.		Gm/m²/24 Hrs.
ACLAR 33C 0.75 mil 2.0 mil	.033 (±.005) .015 (±.005)	19 µ 51 µ	0.51 (±.08) 0.23 (±.08)
ACLAR 22C 1.0 mil 2.0 mil 7.5 mil	.045 (±.015) .028 (±.012) .007 (±.001)	25.4 μ 51.0 μ 190.0 μ	0.70 (± .23) 0.43 (± .19) 0.11 (± .02)
ACLAR 22A 1.5 mil	.030 (±.01)	38 μ	0.47 (±.15)
*Measured on sealed pouches @ 100°F @ 90% RH. ASTM E-96 Method E	.050 (±.005)	19 μ	0.78 (±.08)
	Water Vapor Transmissio	of Typi	ical ACLAR Laminations**
	Gm/100 In.²/24 hrs.		Gm/m²/24 hrs.
1.5 mil ACLAR 22A /2 PE/71/2 PVC	0.022		0.34
0.75 mil ACLAR 88A /2 PE/7 ¹ / ₂ PVC	0.031		0.48
0.75 mil ACLAR 33C /10 PVC	0.018		0.28

^{**}Measured on a MOCON PERMATRAN @ 100°F @ 90% RH. ASTM-F372-78

	Water Vaper Transa gm-mil/100 in²/24 hrs. (gm-mm/m²/24 hrs @ :	@ 100°F @ 90% RH cc (S	Transmission TP) mil/100 in²/24 hr-/ TP)-mm/m²/24 hr-A	
		0,	N ₂	CO3
ACLAR 33C	See table at left	7 (2.8)		16 (6.3)
ACLAR 22C	See table at left	15 (5.9)	2.5 (1.0)	40 (15.7)
ACLAR 22A	See table at left	12 (4.7)	2.5 (1.0)	30 (12.0)
PVC/PVdC	0.20-0.6	0.8–6.9	0.12–1.5	38–44
copolymer	(0.08-0.24)	(0.3–2.7)	(0.05–0.6)	(15–17)
Polyethylene Low density	1.0–1.5	500	180	2700
	(0.39–0.59)	(195)	(71)	(1060)
Medium density	0.7	250-535	85–315	100–2500
	(0.28)	(100-210)	(35–125)	(40–985)
High density	0.3	185	42	580
	(0.12)	(73)	(17)	(230)
CAPRAN® 77C	19–20	2.6	0.9	4.7
(Nylon 6)	(7.5–7.9)	(1.0)	(0.35)	(1.9)
Fluorinated ethylene propylene	0.4	750	320	1670
	(0.16)	(295)	(125)	(660)
Polyvinyl fluoride	3.24	3.0	0.25	11
	(1.3)	(1.2)	(.10)	(4.3)
Polyvinylidene fluoride	2.6* (1.0)	1.4 (.55)	9 (3.5)	5.5 (2.2)
Polyester—PET	1.0–1.3	3.0-6.0	0.7-1.0	15–25
oriented	(.39–.51)	(1.2-2.4)	(0.28-0.39)	(5.9–9.8)

*23°C

CAPRAN® is a registered trademark of Allied-Signal Corp.

Chemical संesistance

ACLAR resists attack by most industrial chemicals—acids, alkalis, and many solvents. Exceptions include alkali metal complexes and organic amines. A certain few materials such as highly chlorinated-fluorinated solvents, nitrogen tetroxide, and chlorine gas tend to plasticize the film. Silicones tend to induce stress cracking.

The following table reports the effect of many chemicals on **ACLAR**. Specimens were exposed for two weeks at ambient temperatures.

Chamical Resistance Table

Material	Average Weight Increase (%)		Visible Effect on Sample		
	ACLAR 22 & 88	ACLAR 33	ACLAR 22 & 88	ACLAR 33	
Acetic Acid (3%)	None	None	None	None	
Acetic Acid (Glacial)	0.09	0.03	None	None	
Acetone	5.17	0.5	Clouded, extremely flexible	None	
Acetophenone	None	None	None	None	
Ammonium Hydroxide	None	None	None	None	
Aniline	0.01	None	None	None	
Aqua Regia	0.10	0.04	Clear, yellow discoloration	None	
Benzaldehyde	0.02	None	None	None	
Benzene	2.4	0.6	Clouded, flexible	None	
Benzoyl Chloride	0.14	None	None	None	
Bromine	0.15	0.1	Clear, amber discoloration	Clear, amber discoloration	
Butyl Alcohol	_	None	_	None	
Carbon Disulfide (ACS)	0.4	0.2	Clouded	None	
Carbon Tetrachloride	4.1	1.6	Flexible	Slightly flexible	
Citric Acid (3%)	None	None	None	None	
Cyclohexanone	0.35	None	Clouded	None	
1,2-Dichloroethane	0.11	0.03	Clouded	None	
2, 4-Dichlorotoluene	0.15	0.06	Clouded	None	
Diethyl Phthalate	None	None	Clouded	None	
Dimethylhydrazine (anhy.)	3.9	1.8	Blistered	Amber discoloration	
Dioxan	1.9	0.15	Flexible	None	
Ethyl Acetate	7.65	6.0	Extremely flexible	Very flexible	
Ethyl Alcohol (Anhyd. Denat.)	None	None	None	None	
Ethyl Ether	5.6	5.2	Clouded, extremely flexible	Very flexible	
Ethylene Oxide	5.8	4.0	Clouded, extremely flexible	Very flexible	
Formic Acid	None	None	None	None	
Furan, B.P. 31°–32°C.	5.4	3.7	Smokey discoloration, extremely flexible	Very flexible	
Gasoline (Premium Grade)	0.83	0.2	Clear, amber discoloration	None	
Heptane	None	None	Slightly clouded	None	
Hexachloroacetone— 20% Deeprock Heavy Cycle Oil (35-40% Aromatic)	None	None	None	None	

Chemical Resistance Table

Material	Average Weight Inc	rease (%)	Visible Effect on Sam	ple
	ACLAR 22 & 88	ACLAR 33	ACLAR 22 & 88	ACLAR 33
Hexachloroacetone— 20% Kerosene	None	None	None	None
Hydraulic Fluid (Monsanto Fluid OS-45)	None	None	None	None
Hydraulic Fluid (Monsanto Pydraul F9)	None	None	None	None
Hydrochloric Acid (10%)	None	None	None	None
Hydrochloric Acid (Conc. 36%)	None	None	None	None
Hydrofluoric Acid (60%)	None	None	None	None
Hydrogen Peroxide (30%)	0.23	None	Clouded	None
IP-4 Referee Grade	0.09	0.03	None	None
JP-4 Flight Grade	0.02	0.01	None	None
Lactic Acid (3%)	None	None	None	None
Liquid Oxygen			Passes lox impact test	Passes lox impact test
Malathion EM-J	0.05	None	None	None
Methanol	0.10	None	None	None
Methyl Ethyl Ketone	5.9	1.2	Extremely flexible	Slightly flexible
Nitric Acid (10%)	None	None	None	None
Nitric Acid (Conc. 70%)	None	None	None	None
Nitric Acid (Red Fuming)	0.07	0.04	None	None
Nitric Acid (Conc.)— Hydrofluoric Acid (60%) (50:50)	None	None	None	None
Nitrogen Tetroxide			Flexible, yellow discoloration	Flexible, yellow discoloration
Oil (Motor Premium Grade)	0.01	0.01	None	None
2, 4-Pentanedione	0.17	0.20	Clouded	None
Pyridine	0.55	0.1	Clouded	None
Sodium Hydroxide (50%)	None	None	None	None
Sodium Hypochlorite	None	None	None	None
Sulfuric Acid (30%)	None	None	None	None
Sulfuric Acid (Furning 20%)	0.03	0.02	None	None
Toluene	2.8	1.1	Flexible	Slightly flexible
Toluene Diisocyanate	0.44		None	_
1, 1, 2-Trichloroethane (Tech.)	0.04	0.02	Clouded	None
Trichloroethylene	10.9	7.8	Clouded, extremely flexible	Clear, very flexible
Trichlorotrifluoroethane Genesolv D		-	Cloudy, extremely flexible	Cloudy, very flexible
Triethylaluminum	0.13	0.01	Slightly crazed	Slightly crazed
~~~ · · · · · · · · · · · · · · · · · ·	<del></del>			

## APPENDIX E

Information on Polyvinylidene fluoride (PVF₂, KYNAR)
Provided by
Soltex Polymer

# Wide range of products

#### **HOMOPOLYMERS**

TYPE	APPEARANCE	CHARACTERISTICS AND MAIN USAGES
Series 1000		Virgin resins
SOLEF 1006	translucent	Applications requiring high fluidity: Multifilaments, injection moulding of parts with very thin walls.
SOLEF 1008	translucent	Injection moulding - general: Injection moulding of complicated shapes or thin walls. Extrusion of thin walls, particularly of tubes < 8 mm diameter. Transfer and centrifugal moulding. Film extrusion.
SOLEF 1010	translucent	Standard grade.  General extrusion and injection moulding. Extrusion of tubes, films, sheets and thin panets (5 $\mu$ m - 12 mm).  Compression and transfer moulding. Blow moulding of films (5 to 100 $\mu$ m) and hollow objects.
SOLEF 1012	translucent	Applications where low fluidity is required: Extrusion of thick walls, particularly for large diameter tubes and heavy sections. Compression moulding.
Series 6000		Improved thermal stability virgin resins
SOLEF 6010	translucent	Thick semi-finished items.
Series 4000		Pigmented master batches, to be diluted ten times (25 colours available).
Series 3000		Compounds for special applications
SOLEF 3108	black	Anti-static: formula reinforced with carbon black. Extrusion or injection moulding of anti-static units.
SOLEF 3208	translucent	Self-lubricating: formula lubricated with PTFE. Applications requiring low friction coefficient (e.g. valve seatings).
Series 8000		Reinforced grades to obtain a high dimensional stability
SOLEF 8808	black	Grade reinforced with carbon fibres. Applications requiring extremely high rigidity.
SOLEF 8908	brown	Grade reinforced with mica. Applications requiring very high rigidity and low warpage.
Series 5000		Special size graded powders
SOLEF 5008	translucent	Top coat for electrostatic powder spraying.
SOLEF 5508	red	Primer for electrostatic powder spraying.
SOLEF 5708	translucent	Rotational moulding grade.

#### **COPOLYMERS**

TYPE	APPEARANCE	CHARACTERISTICS AND MAIN USAGES
SOLEF 11010	translucent	Virgin resin.  For use where more-flexibility and very high elongation at break are required: electric and telephone cable sheathing, extrusion of sheets.
SOLEF 11010/0003	translucent	Electric and telephone cables requiring good resistance to flame spreading and low smoke emission (approved by the UNDERWRITERS' LABORATORIES for UL 910 and UL 94 V-O tests).

# Very high performance

Table 1 - Main characteristics of SOLEF PVDF

PROPERTIES	STANDANDS	UNITS	1008	1018	1012 SEM-	3108 AATR-	3208 AMTI-	8008 REMFORCE		
			PLECTION	EXTRUSION	PHISHED	STATE	ANCTION	GF*	MEA	EXTRUSTOR
PHYSICAL PROPERTIES  Density	ASTM D 792	g/cm³		1.78		1.73	1.78	1.78	1.84	1.77
Water absorption (24 h at 23°C) Refractive index at 23°C Melt flow index	ASTM D 570 ASTM D 542 ASTM D 1238	% -		< 0.04 1.42	· · · · · ·	0.07	0.04	0.05	0.04	< 0.04 1.41
- 230°C, 10 kg - 230°C, 5 kg - 230°C, 2.16 kg		g/10 min g/10 min g/10 min	50 18 6	13 4 1	4 1 0.2	17 6 1	55 20 6	52 19 5	38 16 -	22 5 -
MECHANICAL PROPERTIES										
Tensile:										
Tensile stress at yield, 5 mm/min Ultimate tensile strength, 5 mm/min Elongation at break, 5 mm/min Modulus at 1 mm/min	ASTM D 638 ASTM D 638 ASTM D 638 ASTM D 638	MPa MPa % MPa	57 50 12 2600	54 46 80 2400	51 43 100 2100	50 43 9 3800	53 46 70 2300	93 93 1 6000	49 47 6 4200	31 25 430 1000
Flexion:	A31M 0 000	1017 G		2700	2.00		2000			''
Maximum load Modulus	ASTM D 790 ASTM D 790	MPa MPa	94 2500	74 2300	70 2000	89 4500	78 2200	170 ⁽¹⁾ 6000 (1) rupture	81 4700	49 1000
Compression:									91	
Max. strength at 1 mm/min Modulus at 1 mm/min	ASTM D 695 ASTM D 695	MPa MPa	85 2900	80 2400	75 2100	90 3800	80 2300	96 6000	•	49 -
Shore D Hardness	•	•	79	77	77	82	78	82	81	72
Tensile impact strength - on pressed sheets - on injected sheets	DIN 53448	kJ/m² kJ/m²	300 600	400 600	400 600	150 -	300 -	270 -	- 147	570 700
Abrasion resistance	TABER CS 10 (load 1 kg)	mg. (1000 cycle) ⁻¹			5 -	10	nalia a	-	18	10
Friction coefficient - static - dynamic	ASTM D 1894		0.45 0.34	0.45 0.34	0.45 0.34	0.33 0.23	0.20 0.15	0.33 0.23	0.28 0.25	0.33 0.31
- Cyriamic			0.04		<b>0.3</b> -1					-
THERMAL PROPERTIES	40TH 1 0 4005	ا مد		.,,	140	,,,	1.47	1,67	157	oe.
Vicat point (5 kg) Deflection temperature	ASTM D 1525 ASTM D 648	ç	147	142	140	151	147	167		96
under load Glass transition point	(1.8 MPa) ASTM D 2236	ڻ ص	115	113 -40	105	129 -35	117 -40	134 -35	-	-35
Crystalline melting point		ొ		177		177	174	176	177	162
Linear thermal expansion coefficient	ASTM D 696	K ¹	106x10 ⁻⁶	128x10 ⁻⁶	143x10 ⁻⁶	36x10 ⁻⁶	106x10 ⁻⁶	36x10 ⁻⁶		120x10 ⁻⁶
Thermal conductance (20 - 150°C) Specific heat (between 0 and 100°C)	ASTM C 177	W.m ⁻¹ .K ⁻¹ J.kg ⁻¹ .K ⁻¹		0.19 960		0 <i>2</i> 3	0.19	0.22	•	0.17 960
Crystalline fusion heat	calorimetry	kj.kg ^{.1}	71	66	63	54	60	57	•	38
ELECTRICAL PROPERTIES								•		
Volume resistivity Surface resistivity	ASTM D 257 DIN 53483	Ω.cm Ω		5x10 ¹⁴ >10 ¹³		<10 ⁴ ** <10 ³	1x10 ¹⁴ >10 ¹³	2x10 ¹³ 2x10 ¹²	1.8x10 ¹⁴ 1.5x10 ¹⁴	6x10 ¹⁴ 5x10 ¹⁴
							2-3			2

55

# SOLEF° PVDF

#### **TABLES OF CHEMICAL RESISTANCE**

SOLEF PVDF is remarkably resistant to most inorganic acids and bases, aliphatic and aromatic hydrocarbons, organic acids, alcohols, and halogenated solvents. It is also resistant to the halogens (chlorine, bromine, and iodine, but not to fluorine).

It is degraded by fuming sulphuric acid (oleum), some strongly basic amines, concentrated alkalis, and alkali metals. It swells slightly in strongly polar solvents such as acetone and ethyl acetate, and is soluble with difficulty in aprotic polar solvents such as dimethylformamide, dimethylsulphoxide, tetramethylurea or hexamethylphosphotriamide.

The following tables give an indication of the chemical resistance of SOLEF PVDF grades 1008, 1010, 1012, and 5008. The chemical substances are listed according to the rules of the "Handbook of Chemistry and Physics" published by The Chemical Rubber Company, 59th edition. The solutions are aqueous, unless otherwise indicated. The "%" sign indicates "g of solute per 100g solution". The term "sat." indicates a concentration such that the solution is saturated at 25°C.

The tables are divided into two parts. The left-hand side gives the chemical resistance of solid SOLEF PVDF, as it is used for tubes, fittings, linings, pumps, etc. The right-hand side refers solely to powder coatings applied by electrostatic spraying or by fluidized bed.

In order to determine the chemical resistance of solid SOLEF PVDF, stress free test pieces (2 mm thick) were completely immersed for 30 days in each medium. After drying the surface, they were measured, weighed and subjected to a tensile test.

The assessments about solid SOLEF PVDF do not take into account possible diffusion of a substance through the material. In addition, resistance of pipe made of SOLEF PVDF to pressure has been evaluated as a function of time and temperature, in the presence of numerous chemicals. An asterisk (*) shows which compounds listed in the tables have been tested in this way.

For powder coatings (right hand column), carbon steel plates coated by electrostatic spraying (average thickness of the coating 400 microns —.016") were immersed in each medium for 30 days. After drying, the plates were weighed and their appearance examined. The porosity of the coating was then tested using an electric spark technique. The adherence of the coating was checked using a test developed by the SOLVAY Laboratory. The assessments about powder coatings take into account possible diffusion of a substance through the PVDF...

# SIGNS USED AND EVALUATION CRITERIA SOLID SOLEF PVDF (thickness \( \) 1 mm)

- + : SOLEF PVDF is resistant -
  - 1) Its dimensions change by not more that 1.25%
  - 2) Its weight changes by not more than 2%
  - 3) Its tensile yield strength does not change by more than 15%

o : Use of SOLEF PVDF is limited -

The response to at least one of the three criteria above was negative. For instance the weight changes between 2% and 5%. However, SOLEF PVDF can be used in the medium, provided that it is not subjected to undue stress (e.g. for linings, reinforced parts, etc). In this case, it is recommended to obtain advice from SOLTEX.

- SOLEF PVDF is not resistant There is considerable deterioration of the material; dissolution, chemical or physical attack, permeability, etc. For instance the weight changes by more than
- B.P.: Boiling point of the medium concerned

#### SOLEF PVDF POWDER COATINGS (thickness <1 mm)

- + : The SOLEF PVDF coating is resistant No visible change in either the color or permeability of
  the coating after at least 30 days continuous treatment
  in the medium concerned. The weight variation of the
  coating is less than 2%.
- O: Use of SOLEF PVDF coating is limited -Coating usable with certain restrictions due, for example, to a change in color without loss of properties, or to slight swelling in a solvent. The increase in weight lies between 2% and 5%.
- The SOLEF PVDF coating is not resistant -Coating unusable due to various causes which arise either individually or simultaneously, for example:
  - Chemical attack
  - Detachment of the coating
  - Change in color of the base coat
  - Permeability
  - Dissolution of the coating
  - Increase in weight of more than 5%.

#### POINTS TO BE NOTED

In the case of SOLEF PVDF used for coating metal surfaces, either as lining or by powder application, there is a risk of water diffusing through the coating, which increases with increasing temperature and decreasing thickness of the coating. This phenomenon is encountered only in the case of dilute solutions at temperatures above 70°C. For these applications, it is advisable to contact SOLTEX for further information.

In the case of finished articles made of Solid SOLEF PVDF, external or internal stress may make the material less resistant to certain media as the result of a phenomenon which is referred to as "stress cracking", which is well known with other polymers.

#### INDEX

1 - Inorganic M	fedia	 page 2
2 - Organic Me	dia	 page 5
3 - Miscellaneo	us Media	 page 10

# inorganic Media

			Solid SOLEF PVDF SOLEF PVDF Used As Coating							B.P.							
Medium	Formula	Conc.				Temp		<b>PO</b>	Media		<b>∕°</b> C		,		<u> </u>		Remarks
			77 25	122 50	212 100	257 125	302 150	B.P.	77 23	122 50	167 75	212 100	257 125	B.P.	**	•€	
- Aluminum ammonium sulphate chloride fluoride hydraxide ritrate potaesium sulfate	AINHLISOJI: 12HIO AICI: 6HIO AIF: AI(OH): AI(NOJI: 6HIO AI(NOJI: 6HIO AI(SOJI: 6HIO AI(SOJI: 6HIO	50% sst. 50% sst. 50%	•	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* *		* * * * *	** ***	* *	* * *	* *			229 239 212 224.5 214	109.5 115 100 107 101	÷
Ammonio	NHs		+	+	+	+			+	+	+	+	+				
American aluminum sulfate carbonate chloride hydroside hydroside nitrate orthophosphate sulfate sulfate antimony (III) chloride	ARNHU(SOJ): •12H;O (NHL):CO; NHLCI NHLF+NF NHLOH NHLNO; (NHL):FO;•3H;O (NHL):SO; (NHL):S	50% 50% 80L 50% 50% 50% 50% 50% 100%	* * * * * * * * * * * * * * * * * * * *	* * * *	* * * * * * * * * * * * * * * * * * * *	•	•	•	* * * * * * * *	•	•	+ + -			229 230 2335 228	109.5 115 112 109	Becomes black Becomes brown Becomes black
Bertum chloride hydraxide	BaCl ₂ -2H ₂ O Ba(OH) ₂ -8H ₂ O	- 100 de 1	;	:	÷	÷		÷	:	÷	÷				219 215.5	104 102	
Beric acid, ortho-	H ₂ 8O ₂	set.	٠	•	<u>.</u>	+		•	+	+	+				215.5	102	
Serva triffuerida	SF,		•														
Browlee bromine water	8rg	100% 2%	:	:	• •	+			•	+	<u>•</u>	=					Slight color
Calcium carbonate chloride hydraxide nitrate sultate	CaCO ₃ CaCl ₁ Ca(OH) ₂ Ca(NO ₃ ) ₂ -4H ₂ O CaSO ₄ -2H ₂ O	***	****	* * * *	* * * *	* * * * * * * * * * * * * * * * * * * *	•	* * * * *	* * * * *	* * * * * * * * * * * * * * * * * * * *	•	+	+	+	214.5 256 213 239 213	101.5 124.5 100.5 115 100.5	
Carbon dioxide suffide-di tetrachioride	<b>සි</b> ස්ස්	100% 100%	• • •	* *	*	•		•	÷	•	•			*	115.3 170.1	46.3 76.7	
Chierine chierine water disside	CIO ₈	dry moist	÷	÷ +	÷ ÷	•			•	<u>÷</u>	•						
Chloric acid, per	HCIO ₄	1096 7096	* * *	· •	÷	_	·	•	÷	* *	÷ •	<u>.</u>			215.5	102	
Chloresulfonic acid	HBO _s CI		•	-				_									
Chromium mids, 11 "	CrO ₈	30% 40%	**	÷	÷	•			÷	÷	÷		-				Becomes brown Becomes brown
Copper (II) chloride (II) nitrate (II) suitane	CuCy+2H ₂ O Cu(NO ₂ H ₂ -3H ₂ O CuSO ₁ +5H ₂ O	50% 50% est.	*	:	* *			:	:	÷	÷				236 232 221.5	112.9 111 106.5	
Plearine	Fs.		٠						_								
Fluorestileic acid	H _s sF _e	50%	•	+	+									ļ			
					·····						· .						

## Inorganic Media

-				Sell	4 50	LEF P	VDF		SOL	ef pv	DF U	ood A	s Cooting		BLP.	
Medium	Formula	Come.					eretur	• 01				_	<u> </u>	<u> </u>	T	Remerks
			77 25	122 50	212 100		302 150	R.P.	25	122 50	167 75	212 100	257 125 BJ	: 47	*C	
Hydrogen bromide chloride	HBr HCl	10% 25% 40% 50% 63%	• • • • • •	:	• • • • •	•		+ + + +	• • • • • •	•	•	÷ -		255.7	124.3	Becomes brown
Sucride	HF	10% 20% 28% 36% 42% 100% 8% 35% 50%	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *		++++	++111+++0	+ + - + + + + + + + + + + + + + + + + +	• - • -	-		227.5	108.6	
iodide peraxide	HI H _E O ₂	57% 30%	•	<u>:</u>	÷	+			:	+						Becomes brown
lodino	lg .	dry moint	÷	<b>*</b>												Becomes brown Becomes brown
iren (II) chloride (III) chloride (III) nitrate (III) suitate	FeCir-4HrO FeCir-6HrO Fe(NO3)2-9HrO Fe(8O4)3	81.50% 85% 85% 81.50%	* * * * *	* * * *	*			* * * * *	* * * * * *	*	:	:		247 243.5 239 220 222	119.5 117.5 115 104.5 105.5	
Land Scottle	(CH ₂ COO) ₂ Pb+3H ₂ O	set.	•	+	•	•		•	+					215.5	102	
Magnesium carbonata, basic chtoride hydraxide nitrate sullate	MgCO ₂ •Mg(OH) ₂ •3H ₂ O MgCl ₄ •6H ₂ O Mg(OH) ₂ Mg(NO ₃ ) ₂ •6H ₂ O MgSO ₄ •7H ₂ O	88L 50% 88L 88L 50%	* * * *	* * * * * * * * * * * * * * * * * * * *	•	•		+++	****	* * * * * * * * * * * * * * * * * * * *	*	÷		230 214 246 216.5	110 101 119 102.5	
Mercary (II) chloride (II) nitrate	HgCl ₂ Hg(NO ₃ ) ₂ +H ₂ O	sat.	* *	÷	÷			••	:	÷	:	÷		215.5 216.5	102 102.5	
Michel chloride nitrate sullate	NICI ₁ -6H ₂ O NI(NO ₃ ) ₂ -6H ₂ O NISO ₄ -6H ₂ O	sal. 50% sal.	* * *	* * *	:	÷ ÷		* * *	*	÷	÷	÷		248 247 236.5	120 119.5 113.5	
Mirie acid	HNO₃	55 20 56 30 56 50 55 65 65 65 65 65 65 65 65 65 65 65 65	* * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *			*. * * * 1	+ • •	+	•				•
Oxygen	O ₂		+	+	•	•										
Phosphoric ortho-ecid	нъро.	30% 50% 85%	*	÷	÷ ÷	+		•	* *	÷	* *	÷		215.2 316.5		
Phosphorus chloride, tri- axychloride	PCI ₁ POCI ₃		•	+	•				<u>+</u>	-						
Petnechum aluminium sulfate bramide carbonate chiorate chiorate dichromate ferrecyanide	Al(80a);•KeS0e24HeO IGB KeC0e ICOe ICO KeCreOr KeFeICH];•SHeO	50% 50% 50% set. set. set. 50%	•	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	• • •		* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	<b>* * * * * *</b> * *	• • •	•	223.6 235.5 244.6 218.5 231.8 224.5 223.5	106.5 113 118 103.5 111 107 106.5	Secomes brown

# Inorganic Media

				Soli	4 501	ef p					-	eed A	e Cee	dag	1	LP.	
Medlum	Formula	Cessc			<b>-</b>	•		n Of	Modfa	_					<u> </u>	<u> </u>	Remarks
			77 25	122 50	212 100		302 150	B.P.	77 25	122 50	167 75	212 100	257 125	B.P.	47	℃	
Petassian (cont.) hydroxide nitrate permanganate sulfate sulfide	KOH KNO ₃ KMACO4 K4SO4 K4S	50% 50% sat. sat. 50%	••••	* * * * * * * * * * * * * * * * * * * *	• • • •	-		•••1	****	:	• • •	<u>:</u>		-	268 225.5 214.5 214.5	131 1075 101.5 101.5	Destroyed Discolaration
Silver nitrate cyunide	AgNO ₃ AgCN	50% 35%	*	÷	÷	÷		•	•	+	+	•			223.5	106.5	
Sodium acetzie benzoate tetraborate bromide carbonate hydrogen carbonate chlorate cyanide	CH ₂ COONe C ₂ H ₂ COONe Ne ₂ B ₂ O ₇ =1OH ₂ O NBBr Ne ₂ CO ₂ =1OH ₂ O NBCO ₃ NBCO ₃ NBCO ₃ NBCO ₃	ant. 50% 50% 50% ant. ant. ant. 50% 50%	* * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	• • • • • • • • • • • • • • • • • • • •	•		******	* * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	+		231.8 222.8 217.5 244.5 217.5 215.5 214.5 230	111 106 103 118 103 102 101.4 110	
fluoride hydraxide	NaF NaOH	est. 0.1546 0.546 1.546 546 1546 3046	+000000	+ 0 0 0	000000	0 0 0 0		000000	•	•	•	•			213	100.5	
hypochlorite	NaCiO	40% 50% 60% 70% 80% 5% 28%	000	0	0	000		0	0 0 ++	0	0 0 -	0	-	-	260 267 318 356	127 142 159 180	
nitrate nitrite orthophosphase silicate sulfate hydrogen sulfate sulfite hydrogen sulfite sylide sticaultate sulfide	NeMO ₃ NaMO ₂ Na ₂ PO ₄ =12H ₂ O Na ₂ SO ₄ Na ₂ SO ₄ Na ₂ SO ₃ NaMSO ₃ Na ₂ SO ₃ =5H ₂ O Na ₂ S	50% 50% 50% 88L 50% 88L 50% 50% 50%	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + 0	+ + + + + + + + 0 0	+ + + + + 0 0		* * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	· · · · · · · · · · · · · · · · · · ·	* * * * * * * * * * * * * * * * * * * *		•	233.5 238 218.5 237 220 229 217.5 232.5	112 114.5 103.5 114 104.5 109.5 103	
Salfer dioxide trioxide	5, 50, 50,		+ + 0	÷ -	÷	* *			+	•	+	+	+				
Sulfochrumic acid		40% 90%	÷	÷	0 +				:	÷	÷	0					Becomes brown
Sulfuric acid	H ₈ SO ₄	50% 60% 70% 80% 90% 93% 97%	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * *	+ + + + 0		•	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	+ + + + 0	* * * * *	+ + 0	*	257.5	142	
+ chlorine water aleum		10% SO. 30% SO. 65% SO.	•	•	•	•			<u>÷</u>	•							
Sulfanitric acid	65% 80 ₄ / 20% NO ₂ / 15% H ₂ O		•	+	+												
Thiosyt chloride	soci,									_							

				L	BOL	gani	c Me	dia									
				Sell	4 500				SOL	_		_	La Cas	يعل		LP.	
Medium	Formula	Conc	77 25	122 50	212	_	302	B.P.	77 25	$\overline{}$		_	257 125	B.P.	•7	•c	Remerks
The (II) chloride (IV) chloride	SnCl _e SnCl _e	50% 50%	:	÷	÷	+	·		:	÷	÷	+					
Water	н₀		•	+	+	+	+	+	+	+	+	•	•	•			
Zine chloride nitrate sullate	ZnCle Zn(NOs)z+6HzO ZnSOz+7HzO	50% 50% set.	:	*	* *	*		* * *	* * *	÷	* * *	*			231 242.5 220	110.5 117 104.5	
Organic Media																	
Acutaldebyde trichloro -		40% 100%	<u>:</u>	+	+	•		-	+	•	-			_	208.4	96	
Acatic acid manachioro -		100% 50% 100% 75%	:	÷ +	• •	_		0	*	•	+	<u>:</u>		-	245.5 215.5 372	118.5	
dictioro - trictioro - inydraxy -		50% 50% 100% 50% 65%	*	<del>-</del> + +	•				* * * *	- + + + +	0 + 1	- -			388.5	198	
mashytchlorophenoxy - , antrydride , chloride , butyl ester , cyclohearyl ester , ethyl ester , 2 ethoxyethyl ester , 1-pentyl ester , nittle			•1 ••• ••	*	÷ ;			1	•   • • • • • •	• • • • • •	* * *	+ - + + +			313.5	156	Becomes brown  Destroyed  Swelling
Aceteme see 2-propenone												_					
Acatophenone			*	+	+				<b>*</b> *	+	+	<u> </u>					
Acutemitrile see acetic acid, nitrile																	
Acrylic acid see propensic acid																	
Acrylesitrile see propensic acid ni	rite																•
Allyl chloride see 3-chloropropene																	
Amine diathyl - diathyl - diathyl - dimethyl - triathyl - 2.2'.2"trippdroxyethyl)			0 + +	_	-	=			1 + +	-							Becomes brown
Amyl alcohol see 1-pentanol												•					
Astitus dimetryl -			* *	+	-	-			<b>+</b>	<b>*</b>	÷	=					Destroyed at 100°C
Bennidskyde			+						+	+	+	+					
Beausene chiere - p-dibrome 1,2-dichiere -			* *	÷	o +	•		+	:	:	:	+	•	•	176.2 269.6	80.1 132	

# Organic Media

	<del></del>	<u> </u>								<b>—</b>		le Coetin	. T		1	
			548	4 501			-~	Modie			_	us Contain	<del>'</del>	B.P.		
Modlum	Come	77 25	122 50	_	257	302	B.P.	77 25	_	167 75	_	257 125 B.	. 4	٠c	Remarks	
Benzene (cent.) 1,2,3 trihydraxy nitro -	50%	:	÷	+		<u></u>	<del>-</del>	٠	+	+	+				Becomes black	
Bensanesulfenic acid 2-chiero -	80%			•					<b>÷</b>	+	•	_	_		:	
Benneic acid 2-hydroxy - 3,4,5, tritydroxy , chloride	961. 962. 963.	:	*	*			•	• -	-			···-	214	101		
Benzyl elcohol see -hydroxytoluene																
Benzyl chloride see -chlorotoluene																
Butage Lchlore		٠	•				٠									
Butanodiole acid 2,3-dihydraxy	sat. 50%	:	÷	÷			•	٠	•	•	•		223	106		
1-Butanoi 2-Butanoi t-Butanoi see 2-methyl-2-propanoi		* *	*	•			•	* *			-		243.5 211	117.5 99.5		
Butaneic acid						•	•						325	163		
2-Butanese		+		-	-			+		_						
2-Butanol		•	•													
Clo-Butane dioic acid	50%	+	+	+	+											
I-Butylamine see 1-amino-2-methylpropane																
Celloselve acetate see Acetic acid, 2-etharyethyl ester														_		
Chloreform see trichtoromethane										•						
Citric scid	50%	<u>+</u>	+	+	+			+	+	+	+					
Cyclobezane		٠	+				•	+	+				178	81		
Cyclobermool		+		_				+			_		322	161.1		
Cyclobezanene		+	+					+	+		_		312.3	155.7		
Disebutylene see 2.5-dimethyl-1,5-hexadiene					-								ļ			
Discretene alcoholi see 4-hydraxy-4-methyl-2-pentanone																
Discoutylizations see 2,5-dimethy1-4-heptanone																
1,4-Disease		0	_					۰	_	_	_		214	101		
Dedecasethici		+	+	+				+	+	+	+					
Dedecaseic scid, chieride		+	+	+	+		0	+					293	145	Becomes black	
Epichlerebydrin see 2-chloro-1,3-epanypropens																
				_												

# Organic Media

		Ī	Soli	4 501	er i	VDF		SOL	E IV	DF U	ood /	Le Coe	وعاة				
Medium	Conc				Ţ-	-	<b>~</b> 00	Medic	a • •1	/°C				<u></u>	LP.	Remerks	
		77 25	122 50	212 100	257 125	302 150	B.P.	77 25	122 50	167 75	212 100	257 125	B.P.	4	٠		
Ethere 1,2-diamine -			+	0			_				_			242	116.5	Becomes brown at 25°C	
1,2-dibromo - 1,2-dichloro -		:	÷	+	+		* *		+	•			+	268 183	131 84		
1,1,2-trifluoro-1,2,2-trichioro- 1,2-Ethenothiel		:	•	•	•	+	•	*					+	117.9	47.7		
Ethenethiel		<u>                                     </u>		-			<u> </u>	<u> </u>					+	96.5	37	<u> </u>	
Ethenel 2-amino - 2-chioro - 2-mercapto -		÷	+		_		<u> </u>	:	<u>÷</u>	<u> </u>	_	<del></del> :	•	173	78.5		
Ethene tetrachioro - trichioro -		:	÷	•			•	:	:	:	•		•	250 188.5	121 87	Becomes black Becomes black	
Ether - dileo ernyl - dibutyl 3,3*dimethyl								٠	•	+	+	•					
- dibutyl - diethyl			•	•	•		+	*	+	+	+	•	+	257 94	142 34.4		
- dileopropyl - diphenyl								•	<b>*</b>	+	+	+	+	156	69		
Ethylene: see ethene - chlorofrydrin: see 2-chlorosthanol - diamine: see 1,2-diamino-ethane - glycol: see 1,2-ethanediol																	
Ethylmorcuptum oce ethenethick																	
Fermaldehyde	37%	+	+	+	+									<u> </u>			
Formic acid .	98% 80% 60% 50%	:	* * *	* * *	* * *		•	:	÷	÷	•			213.3	100.7		
-Chiere -, p+-butyl cyclohexyl ester -, ethyl ester -, methyl ester		:	:					000	=	3					•		
Fumeric acid	set.	+	+	•		•		+									
Ference tetrafrydro -		:	+				+	* *	•				+ +	90 149	32 65	Swelling	
Furtural d-glucoso		* *	0 +	<b>-</b>	+			*	+	+	-	+	323	161.7			
Glutamic acid	set.	+	+	+				•	+	•	+						
Glyceria: see Glycerol																	
Glycarel		•	+	+	+			•									
Clycelic acids see hydroxyscetic acid																! !	
Hopton		+	+	+			+	+					+	209.1	98.4		
Hoptonol 2,6 dimethyl-4-hoptonol		٠	•	+			٠										
Heptanese 2,6 dimethyl-4-heptanone		+	+	•	•	•	0	+						334	168		
Hemothers 2,5 dimetry-1,5-heredone		+	•	+	•		٠	+						273	134		
Hessee		+	+				+	+	+				+	154.5	64		

# Organic Media

	Ì	_	So	<b>M</b> 50	LEF F	VDF		SOL	er p	VDF U	ood /	Le Ce	يهطان		B.P.	
Medius	Come				_	_	~ 01	Mediu	<b></b> •	F / ℃						Remarks
		77 25	122 50	212 100	257 125	302 150	B.P.	77 25	122 50	167 75	212 100	257 125	R.P.	**	~€	
loophorens		<u> </u>						•	+	•						
Servalerone see 2,6-dimethyl-4-heptanone																
Lacife acid see 2-hydroxypropanoic acid					· -		-									
Lawyt chloride see dodecanoic acid, chloride																
Loaryknercuptes see dodecanethiol																
Mothese dichtors - nitre - tetrachtors - trictors - trilods - (50% solution in alcohol)		* * * * *	• • •				•	*	+ + +	•			*	105 213.4 170.1 142.2 187	41 100.8 78.7 61.2 86	Swelling
Methanel		•	+	0	•		+	+		_				148.4	64.7	
Methyl methocrylate - see 2-methyl propencic acid - methyl ester		·														·
Methylene chloride see dichloromethane																
Methylethylbetone see 2-butsnone							,									
Methylloobutythetene see 4-methyl-2-pertanone																
Morpholine		+	+					-						262	128	Becomes yellow
Maphthalane						•						•				Softens
Microtinic acid see 3-pyridine carbonylic acid																
9-Octodosmaic acid (cio)		+	+	+	+	•		+	+	+	+	0				
Olale acid see 9-actadecenoic acid (cis)																·
Cunitic acid	set. 50%	÷	÷	•				•	+	+	•					
1-Proteoni 3-Proteoni		÷	* *	•	۰		·	÷	•				·	279.1	137.3	
Pentanone 4-mathyl-2-pentanone 4-hydrary-4-mathyl-2-pentanone		÷						•								
Phonei	100%	<u>+</u>	+	*			T	+	+	+	+					
2,4,6 ethitro -	50% 10%	:	*	* * *	*	•		•	+	•	_			Ì	İ	
Phosphoric acid - tributyl outer		+ ,					$\neg$						7		$\neg$	
Phihatic acid , dinastryl actor		•	+	•			1	•			•			7		
Plurks acid see 2,4,6-trinitrophenol							1						7	1		
Plyomatee	50%	•	•	+	+			•		· · = <u>-</u>				293	145	Becomes dark
Plants acid eso 2,4,6-trinitrophonal	50%				+									293	145	Becomes de

# Organic Media

			Soli	4 50	er ev	DF		SOL	y r	/DF U	lood /	La Canti				
Medius	Come				7		• Q(	Medic							MP.	Remerks
		77 25	122 50	212 100	257 125	302 150	B.P.	17 25	122 50	167 75	212 100	257 125	BLP.	**	•c	
Propose 1-graino-2-methyl -								_				•	$\neg$			Becomes brown
2-emino-2-methyl - 2-chloro-13-epony -								•					ŀ			
1,2 dichloro -				•									-			
1,2.3,trichloro - 1,2-apany -		•			• 		•	•						95	35	
1,2-Proponedici -carbonate								•	+	+						
Proposale acid 2-hydrany -	50%															
21, July 1	75% 100%	:	*	+				<b>*</b>	<u>:</u>	<b>÷</b>	÷	+				
Methylchlorophenesy proposele acid		+	+	+							_		$\bot$			
1-Proposel 2-methy4-2-proposed		<b>÷</b>	<b>÷</b>				+	<b>*</b>						206.8 180	97.1 82.2	
Propuness	100% 50%	÷	+					:	+				1	133.2	56.2	Swelling
Propens 3-chloro -		* *					+	+	٠				•	113	45	
Proposoic acid		+ 0						* *	-					171.5	77.5	
n estat enter n mestat enter		•						•						211.5		
2-methyl proposole acid - methyl otter								٠								
Propylene see propone -carbonate : see 1,2-Proponed arbonate -carde: see 1,2-epoxypropone																·
Pyvidine -3,carboxylic acid	set.	* *	* *	-				+	+		_	··•		240	115.5	Becomes yellow
Pyrognilel see 1,2,3-trihydranybenzene															-	
Salleytic acid see 2-hydroxybenzoic acid				-												
Stiffens	6%							+	+	+			寸			•
Thanks acid	90E.	+	+	+			•						7			
Terteric ecid see 2,3-dihydroxybutanedioic ecid										".						
Tobuses -chiorehydroxy -		+	+	+	•		•	÷	÷	÷	÷			231.1	110.6	Dissolves Dissolves
Triethenologies see 2,22°trihydroxytriethytemine																
Uren		•	+	•				•	+		•					
Xylene				_			寸	+	+	+	_		$\top$			
												******	十	$\neg$		
	- 1														ſ	
	- 1												1			
										·						

			Mis	ceil	abe	0 <b>44</b> 5	Med	ia								
			Sel	4 50								s Cos	ting		B.P.	
Medium	Come	<u> </u>	,		Pen		N CX	Modile	B · 'T	/-					<del>,</del>	Remarks
		π 25		212 100			B.P.	77 25	122 50		212 100		B.P.	**	₹	
Bourgaightense souce	- I	+	+	+	+			+				_				
Bready	1	+	•	•	•		•							1	Į	1
Clave Oil	I	+													}	
Cooking for	ı	+	+	+	+			*							ŀ	1
Katchup	İ	*	•	•	•			•						ł	ļ	
Lard Lineard oil	1	1 :	+	+	•			1 :						)	)	1
1000		1:	•	•	+		+	:							į .	
Mostard			•	+	+	+	•	;							1	
The water		l .	•	•	•	•	+	,	+	•	•			212	100	į.
The	1	•	•	•	•		÷		•	•				212	100	
	+	<u> </u>					_	<del>-</del>						<del></del>	<del>                                     </del>	
Crede Oil	1	•	+	+	+			+	+	+	**				l	l
Dissel feel	1	•	+				+	•	+	+			+	194	90	Becomes black
Flushing oil	1	*	+	+	•	+									l_	Becomes brown
Light oil Gazalina		*	•				+	*	•				+	158	70	Becomes black
Mineral eli	1	*	* *	* *	•			*	•	*	*			l		Becomes black Becomes black
Shell Tellus 72 ell	i	🖫	•	•	+	_		•	•	•	•					Becomes brown
Shall Tellus 27 oil	1	.	*	•	•	Ĭ		1								Becomes brown
Shall Talles 15 oil	1	l 🗼	•	•	·	•									1	Becomes brown
Shell Tellus 29 eli	1		•	+	•	+								Ī	ĺ	Becomes brown
Shell Macous 82 oil	i	+	•	+	+	+									ŀ	
Shell Mecone 72 oil		+	+	+	•	+		i							İ	
Shall Macross 60 oil		+	+	+	+	+								l	ł	
Shell Thips 60 oil	1 :		•	•	•	+									l	Becomes brown
Shell Taips 30 oil		+	+	•	+	+									ł	Becomes brown
Shell 29/20 ell	1	+	+	•	+	+									ł	_
Shall Vitres 30 oil		+	•	+	+	•										Becomes brown
Sheli Vitren 75 oli Sheli Vitren 41 oli	1 1	•	•	•	•	•										Becomes brown
Shall Volute 270 ell	1	*	•	•	•	<b>+</b>										Becomes brown
Shall Volute 45 off			<b>+</b>	•	•	-	-									Becomes brown
Shell ATF Degree ell			•	•	•		l									
UCB Spoins off		•	•	•	*	•										Becomes brown
Caltur URSA 50 oil		•	•	+	•	+						•				Becomes brown
Denosi G eli		+	+	+	+	+							l			Becomes brown
Mobil compounds 88	1	+	•	•	+	+							į			Becomes brown
fight		+	+	•	+	+							l			Becomes brown
Yacco Y ell		+	+	+	•	+	_									Becomes brown
Aqua regia		•														
Bremine water			+	+			l	_			_		1			
See water	1 1	+	•	•				+	+	+	•		.	217	103	
H ₀ SO ₆ : HNO ₆ (1:1)		•	+					+	•	•	-		_			
Karasana		+	+				+	+	+				•	158	70	
Naphtha	1 1	+	•				1	•					j	·		
Skydrai 500 B	1 1	•	•	+	•		- 1						I			
Xylei technical	1 1	•	•	•	•		•	•	+	+	_		ł	284	140	

All information in this document is given in good faith but without warranty or guarantee of any kind whatsoever, whether implied or expressed. Freedom from patent rights must not be essured.

National or local regulations on industrial safety and hygiene are applicable in all cases; in no case can we accept any responsibility for non-observance.

Blank

#### APPENDIX F

### PROPERTIES OF PLASTICS

Extracted from <u>Perry's Chemical Engineer's Handbook</u>, <u>Sixth Edition</u>, Don W. Green, Editor, (c) 1984 by McGraw-Hill, Inc., pp 23-48 to 23-57.

Table F-1. Chemical Resistance of Important Plastics

	Poly- propylene poly- ethylene	CAB*	ABS†	PVC;	Sarani	Polyester glass¶	Epoxy giant	Phenolic asbestos	Fluoro- carbons	Chlorinated polyether (Penton)	Poly- carbonate
10% H ₈ SO ₄	Excel. Excel. Excel.	Good Poor Excel. Poor Good	Excel. Excel. Excel. Good Excel.	Excel. Excel. Excel. Excel. Excel.	Excel. Excel. Excel. Excel.	Excel. Good Excel. Good Excel.	Excel. Excel. Excel. Good Excel.	Excel. Excel. Excel. Fair Excel.	Excel. Excel. Excel. Excel. Excel.	Excel. Excel. Excel. Excel.	Excel. Excel. Excel. Excel.
10% NaOH 50% NaOH NH ₄ OH	Excel. Excel. Excel.	Fair Poor Poor	Excel. Excel. Excel.	Good Excel. Excel.	Fair Fair Poor	Fair Poor Fair	Excel. Good Excel.	Poor Poor Poor	Excel. Excel. Excel.	Excel. Excel. Excel.	Excel. Excel. Excel.
NaCl. FeCls. CuSOs. NH ₂ NOs.	Excel. Excel. Excel. Excel.	Excel. Excel. Excel. Excel.	Excel. Excel. Excel. Excel.	Excel. Excel. Excel. Excel.	Excel. Excel. Excel. Excel.	Excel. Excel. Excel. Excel.	Excel. Excel. Excel. Excel.	Excel. Excel. Excel. Good	Excel. Excel. Excel. Excel.	Excel. Excel. Excel. Excel.	Excel. Excel. Excel. Excel.
Wet HsS	Excel. Poor Excel.	Excel. Poor Poor	Excel. Excel. Excel.	Excel. Good Excel.	Excel. Poor Good	Excel. Poor Excel.	Excel. Poor Excel.	Excel. Excel. Excel.	Excel. Excel. Excel.	Excel. Excel. Excel.	
Gasoline. Bensene. CCI4. Acetone. Alcohol	Poor Poor Poor Poor	Excel. Poor Poor Poor	Excel. Poor Poor Poor Excel.	Excel. Poor Fair Poor Excel.	Excel. Fair Fair Fair Excel.	Excel. Good Excel. Poor Excel.	Excel. Excel. Good Good Excel.	Excel. Excel. Excel. Poor Excel.	Excel. Excel. Excel. Excel. Excel.	Excel. Fair Fair Good Excel.	Excel. Fair Poor Good Excel.

NOTE: Ratings are for long-term exposures at ambient temperatures [less than 38°C (100°F)].

^{*}Cellulose acetate butyrate.

[†]Acrylonitrile butadiene styrene polymer.

[¡]Polyvinyl chloride, type I.

^{\$}Chemical resistance of Saran-lined pipe is superior to extruded Saran in some environments.

TRefers to general-purpose polyesters. Special polyesters have superior resistance, particularly in alkalies.

Table F-2. Typical Property Ranges for Plastics

		Tensile stren	trength	Modu elasticity	Modulus of clasticity, tension	Impact strength, Izod ^{\$}	trength.	temperature (no load)	emperature (no load)	HDT at 254 lb/	254 lbf/		ס	hemical n	Chemical resistance ^d	_	
Thermosets	Specific	kip	MPa	10tkip/ in	10ªMPa	횰	-	•	ပ္		ပ္စ	Weather	Von k	Strong	Wesk	Strong	Spents
Alkyde	9.0						.[ ]						1				
Mineral Billed	1 60 60 1		8 8	3 2	281-051 100-100 100-100	0.6-10		3	8	400-500	200-260	Œ	<	~	<	<	<
Asheston Billing			70-17	3	10X-10					350-500	180-260	<b>ac</b> ; ,	æ	<	<	۵	<
Surphysic Share Billy J	3		9	: 8	::			8		315	<b>8</b>	Œ	<b>a</b> =	s	æ	S	æ
Number Boar - Gillion	017-75	7-0-		3	88		0 7	300-430	2	245-430	120-220	Œ	æ	S	æ	S	<
carbonate	2.1.5	Ŗ	5	2	7			04 04	8	140-190	<b>8</b>	<b>«</b>	Œ	•	Œ	R-S	<b>æ</b> .
Diellyl phthelates																	
Class filled	1.61-1.78	1	41-78	14-22	97-159	0.4-15	08-90	400		930.840	18K 000	٥	٥	٠			•
Mineral-Billed	1.66-1.66	4	34-62	96-8	R3-152	80-80	7			900		<b>5</b> a	و ء	n :	٠ د د	n c	Z (
Asbestos-Billed	1.55-1.65	9	48-55	22-21	63-152	04-05	9	90,400	20-200	320-540		5 a	E @	n u	ņ	n 4	<b>z</b> 6
Eponies (bis-A)						:	;					•	•	2	2	n	5
No Eller	<b>3</b> -1-8-1-4-1-4-1-4-1-4-1-4-1-4-1-4-1-4-1-4	<del>1</del> -13	8 8	2.15-5.2	15-36	0.2-1.0	0.3-1.4	250-500	120-260	115-500	45-260	Œ	æ	•	æ	v	9
Graphite-liber	1.37-1.38	185-200	1280-1380	118-120	814-827.	:	:	:	:	:	:	S	. ez	: æ	: ac	) OC	. cc
reinforced	•	;													;	:	:
	9-1-1	2-12	25	:	: : :	0.9-0.4				250-500	120-260	s	æ	æ	<b>~</b>	æ	R-S
	0.7- 7.7			8	5		7	900-900	150-260	250-500	120-280	S	æ	ş	œ	<b>E</b>	<u>ب</u>
Liber	1.12-1.2			10-5.2	<u>2</u>					<del>20</del> -50	098-083 098-083	<b>«</b>	æ	<b>E</b>	æ	<b>«</b>	<b>E</b>
Eponies (cycloaliphatic):	1.12-1.18	10-17.5	00-121	5-7	34-48	:		053 067	050-050	500.550	000 000	a	•	•	•		•
no Aller												•	:	5	=	۲ <u>.</u>	2
				:													
	201-02-	9 0	20 - V	=	2	0.2-0.4	0.00	ន្ត	<u>a</u> :	22	8	S	S-E	Δ.	<b>Æ</b>	۵	Œ
Asbestos-filled	1.70-8.0	j		: \$					2 6	2 5	3 5	<b>20</b> (	Š	<u>م</u>	<b>=</b> (	Δ,	Ş
Fabric-Billed	.5	<u>.</u>	55-76	14-16	9				300	3 5	2 5	n u	ç	۵,	en s	so .	as (
Class-Billed	1.8 -2.0	2-10		3			2	300	150-900	9	3	n e	G (E	<b>-</b> -	E a	ں ح 0	ž o
Paenolics	!	(	;								}	•	:	<b>,</b>	:	2	٤
Wood-Bour-Billed	-1.45 24-1.45	9	94-62	8-17	55-117		0.3-0.8	300-350		300-370	150-190	S	A-S	S.D	SD	<	S.S.
Mor. Oll.	8 2 2		90	9	20-20					300-200	150-260	s	S-R	S	S O	<	R.S
Charalled	1	, de	2		172-345		_				20-180	<b>ග</b> (	S-C	S.	3	<	A-S
Pabric-filled	1.36-1.45	9	21-62	3 7	A2-07		\$ = 1 - 3 -				25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 -	en e	S.	ů.	Ö.	< ∙	S-E
Polybutadienes		1	} }	;	;						120-170	n	ç	ž	Š	<	Š
Very high vinyl (no	8.	•••	28	01	Ξ	1.1	1.5	200	.:	:	:	S	<b>«</b>	<b>~</b>	æ	~	<b>a</b>
venters																i	:
Class-Billed BMC	1.7 -2.3	4-10	88	16-25	110-172	1.5-16	20-03 0-03				000-000	٥	4	•	•	ç	
has-filled SMC	1.7 -8.1	8	55-138	5 5	110-172	라 3		99	200	651	200-530 200-530	1 E	< d	< <	۲ م د م	, ,	Y
Clear-cloth reinforced	1.3 -4.1	22-53 22-33	178-345	<u>5</u>	131-310	<b>8</b>	Ţ				900-230	F	. Y	. <b>4</b>	, <b>4</b>	30	2 4
Clear-Billed	1.7 ~20	4.48	98.48	¥1 -01	60	=	8	8		ş	Ş	,		,			!
Mineral-Blied	1.6 -2.8	9	7 8	- S	<b>8 2 3 3</b>			38	3 8	38	23 S	٠ د د	ب ج	ž e		۲. د د	¥ :
Uress	•	1	;					Ì		}	}	•	•	?	,	ć	Y-2
Common timed	1.47-1.52	5.5-13	86-88 88	-0- 13	<del>8</del> -183	0.2-0.4	0.3-0.5	170	26	260-290	130-140	S	R-S	A-D	S-A	۵	R.S
70 Eller	1.1 -1.5	0.2-10	1-66	1-10	7-69	S. S.		129-250	90-120	;		9	u	•	·	i	6
													2	E	0		۲ ۸

Table F-2. Typical Property Ranges for Plastics (Continued)

		Tensile strength	rength	Modulus of ela- tension	Modulus of elasticity tension	Impact strength, fzod ^è		Maximum-use temperature (no foad)	um-use hure (no d)	HDT at 66 NJ/(111 ³	5 Rof/in ^g	HDT at 264 lbf/ in ²	64 lbf/		Š	Chemical resistance ^d	sistence		
Thermoplastics	Specific	kip/in ⁸	MPa	10tip/int	10°MPa	fi ·B	_	ie.	ပ္		ပ္စ	<u>.</u>	ပ္စ	Weather	Weak	Strong	Wesk Stalks	on S	Solvents
ABS CP	8	5.0	<b>=</b>	3.1	12	æ	•	160-200	70-90	210-225	100-110 190-208	190-206	58-08	3-	æ	\ \ \	<b>~</b>	× ×	A/R
High-impact	5 2 5	3	ន	7	11	7.5	9	140-210	90-100	210-225	100-110 188-211		85-100	Ä	<b>«</b>	Ž	Œ	~ E	A'R
Heat-resistant	888	<b>*</b> 2	2	3.8	23	et 61	3.0	190-230	90-110	222-228	110-120	226-240	110-115	<b>3</b>	Œ	٧	Œ	< E	A'R
Trans.	<u> </u>	<b>9</b> 0	8 3	Ø 0	នះ	85.0 85.0		8	8		88	8 8	22.5	e e	<b>6</b> 2 (	>	<b>65</b> 1	<b>S</b>	A/R
Acetals	3	<b>)</b>	į.	4	3	D		3	Ŗ	2		<u> </u>	3	r F	Œ.	•	Œ	< E	A'R
Homopolymers Copolymers	<del>4</del> <del>-</del> -	2 5	8 2	<b>%</b> <del>+</del>	88	1.4 1.2-1.6	6.1 6.2 6.2 6.3 6.3 7 6.3 7	212	88	338	28	22	<b>평</b> 급	<b>~ ~</b>	<b>~ ~</b>	<<	<b>~ ~</b>	A P	
CP CP	=======================================	5.6-11.0	39-76	22 5	16-38	0.3-2.3	0.4-3.1	130-230	55-110	175-225	80-110	165-210	75~100	<b>«</b>	Œ	٠,	Œ	< <	A/R
High-impact	2	5.6-6.0	<b>40-55</b>	<b>8.</b> 3-3.3	16-23	0.8-2.3	1.1-3.1	140-185	96-99	180-205	98-08	165-190	75-90	<b>E</b>	æ	٠,	<b>~</b>	< «	A/R
	===	80-125	38-86	3.5-4.8	24-33	0.3-0.4	0.4-0.5	125-200	30-90	170-200	75-96	155-205	70-95	æ	Æ	ž	Œ	۰ د	A ^f R
Cast	====	9.0-12.5 62-86	62-86	3.7-5.0	26-34	0.4-1.5	0.5-8.0	140-200	90-99	165-235	75-115	160-215	70-100	Œ	Œ	٧,	Æ	< <	A/R
Muhipolymer	8 2	3	41-55	3.1-4.3	21-30	<del>-1</del>	1	165-175	75-80	:	:	185-195	88-90	<b>5</b> 2	Œ	٠,	I	S	γ
Cellulates Acetate	<u> </u>	9	9. K	91.54 1.05.955	-	4	9	980	8		5	3	<b>8</b>			í	,		
	3		3							anz-nzi	081-111 001-00	2		n (	n (	٠ ـ	n ·		D-S
Butyrate	- - - -	30-02	2		۲- ص	3.0-10.0		022-04	96-188	130-227	22-110	113-202	45-85	Ś	S)	۵	s	۵	D-S
E cellulose	<u> </u>		21-55	0.5-3.5	3-24	1.7-7.0	23-9.5	115-185	45-85	:	:	115-190	45-90	s	s	۵	æ	S	۵
Nirate	ង់ខ	1-8	<del>8</del> -55	1.9-2.2	13-15	2-2	6-2	<del>\$</del>	8	:	:	140-160	90-70	<b>tal</b>	s	۵	s	۵	٠.
Propionate	<u> </u>	4.0-6.5	28-45	1.1-1.8	8-12	1.7-9.4	23-13	155-220	70-105	147-250	021-29	111-228	45-110	s	s	۵	s	1 0	D-S
Chloro polyether Ethylene	! =	5.4	37	5.	2	<b>0</b>	0.5	280	9	285	9	:	:	R-S	Œ	`~	£	Œ.	
EEA EVA	82	3.60	- M	0.05 0.02-0.12	0.3 0.14-0.8	8 E	::	<u>8</u> :	8 :	140-147	. 89	: 8	:8	so so	<b>Æ Æ</b>	<b>`</b>	<b>E E</b>	< <	A-D
FEP	7:	2.5-3.9	17-27	0.5-0.7	e •	e Z	:	9	903	<b>3</b> 2	5		:	<b>6</b>	<b>6</b>	æ	ĸ	=	
PTFE	ä	<b>-</b>	7-28	0.38-0.65	2.6-4.5	2.5-4.0	3.4-5.4	920	063	022	82		:	æ	æ	æ	æ	~	
CTFE	이 보	4.6-5.7	32-38	1.8-2.0	18-14	3.5-3.6	4.7-4.9	320-380	180-200	258	<b>8</b>	:	:	<b>~</b>	<b>=</b>	Œ	Œ	s E	
PVFs ETFE and	F 8	7.8 6.5-7.0	8 <del>8</del> 84-8	1.7 2-2.5	##	88 88	84 :	300	05 E	280	88	58 56 58 56	82	ss es	<b>« «</b>	<b>4</b> E	ŒŒ	E &	
Methylpentene	2 2	3.3-3.6	23-25	1.3-1.9	10-13	0.85-3.8	1.3-5.2	273	33	:	:	:	:	ᆈ	<b>~</b>	*	€	< E	
9/9	45	-6	62-83	3.85	53	0.2	- 23	180-300	90-150	360-470	180-240	150-220	165-105	æ	<b>«</b>	<	æ	æ	R.D.
•/10 •/10	758	21.5	862	: e0 : e4	<b>.</b> 2	= <u>9</u> %	2 <b>3</b> 1	180-250 180	90-170 80	300-365	150-185 150	140-155	60-70	<b>E E E</b>	<b>46</b>	<<-	E E E	E E .	
=	<u>5</u>	6.5-6.5	3	1.7-8.1	1 <del>-</del> 21	•	1.6-6.7	175-260	20-155 251-05	:	<del>-</del>	120-130	30-55	: <b>e</b>	E		. E	: E	7-V

Typical Property Ranges for Plastics (Continued) Table F-2.

		The william	ugip u	tensto	tension	Izode		(paq		HDT at 86 lbf/in ⁸		HUT # 264 ISI/	Ì		ਹੈ	Chemical resistance	sistance'	_	
Thermoplastics	Specific	kip/in ⁸	MPa	10 ⁸ kip/in ⁸	10ªMPa	ft · lb	_	F	ပ္	£.	ပ္	4.	0	Weather	Weak Secid	Strong V	Weak S alkals a	Strong	Solvents
Copolymers	8 7	7.5-11.0	52-76	:	:	1.5-19	2-26	180-250	80-120	:	:	130-320	55-180	<b>e</b>	<b>a</b>	~	Œ	€	R-A'
Polyesters			i			;		į		Ş	;	;	;	:	,	•	1		,
7. P. D. T. S. S. S. S. S. S. S. S. S. S. S. S. S.	5 6	- O	27	: 0	. 8	90		175	28 5	240	22	<del>2</del> 5	3 :	<b>=</b> 0	= 0	٠,	<b>a</b> = 0	< ⋅	Y
TML	5 2		2 5	9	3	? -7 -	9:1-0:1	200		200	3 5	3 8	នន	£ a	£ a	<b>=</b> a	ه ک	< •	<b>z</b> 0
Combiner	2 -		5 5	:	:	2 =		2		3	3	1 2	3 5	<b>E</b>	E	5	5	<	E
Polyaryl ether				3.0	25	2	: 3			320	9		2 2	(=	æ	Œ	~	œ	<
Polyaryl sulfone				5.7	8		. 2.				} :	22	275		: œ	: 05	: æ	: <b>c</b>	: ==
Polybuty lene				0.26	9:	£	i				8		S		æ	<b>`</b>	: <b>c</b>	: es	:
Polycarbonate PC A Be		a ĝ	8 2	8. 2.	<b>3</b> 8	12-16	16-22	8	25	-280	130-145	265-285	130-140	ن م کم	<b>Æ</b> 6	<b>~</b> :	< €	< 0	۷٠
Polyethylenes	-	4		- -	3	2	<u>:</u>			3			3		E	ć	5	n	<
C)	-160	0.9-2.5	<b>6-17</b>	0.20-0.27	1.4-1.9	Z B		180-515	90-100	100-120	40-50	90-105	30-40	딸	Œ	٧.	<b>«</b>	æ	æ
41D	2 8	2.9-5.4	20-37	:	:	0.4-14	0.5-19	175-250	90-120	140-190	08-09	110-130	45-55	FI	Œ	R.A.	Œ	Œ	€.
	8	į	!			:						:	;	1	ı	•	ı	1	
naw lonomer	3 4 5	3.4-4.5	17 23-31	0.3-0.7	. <del>.</del> .	e Se	: : <b>xo</b>	160-180	70-80	<u>8</u> 01	5 5 8	2 3 2 3 3 3 3 3 3 3	축 축 왕 왕	ਜ ਦ	<b>=</b> <	<b>.</b> ~	e es	ec ec	<b></b>
Phenylene outde		7.8-9.6	54-66	3.5-3.8	24-26	5.0	38	175-220	80 <u>-</u> 08	230-280	110-140	212-265	100-130	æ	æ	€	Œ	æ	R.A
Polyphenylene	13.5	01	8	4.8	ន	0.3	<b>0</b> .4	95	580	:	:	278	138	Œ	œ	٠,	æ	Œ	Œ
Polyimide	1.43	5-7.5	34-52	5.4	37	2-2	82	200	92	:	:	989	360		<b>«</b>	Œ	<	<	Œ
okypropyrenes GP		4.8-5.5	33-38	1.6-2.2	11-15	0.4-2.2	0.5-3.0	225-300	105-150	200-230	95-110	125-140	36-68	ഥ	æ	*	æ	Æ	æ
High-impact	3 8 S	8	21-34	1.3	•	1.5-12	2-16	200-250	95-120	160-200	70-95	120-135	9-0s	ᄕᆈ	æ	*	æ	Œ	<
Propylene		•	. 8	1.0-1.7	7-12		1.5	190-240	90-115	165-230	85-110	115-140	45-60	E	<b>=</b>	٠,	Œ	Œ	æ
copolymer Polystyrenes																			
	9.5	6.0-7.3	41-50	4.5	<b>.</b>	0.3	0.4	150-170	65-80	:	:	180-220	80-108	s	æ	٧,	~	<b>«</b>	۵
High-impact	\$ 5	2.8-4.6	20-32		20-28	0.1-1.0	0.9-1.4	140-175	98-99	:	:	175-210	80-100	S	Œ	*	~	Œ	۵
Polysulfone Polyurethanes	3 =	10.2 4.5–8.4	70 31-58	3.6 0.1-3.5	25 0.7-24	Z 28	9.1	900	8 8	360	<b>98</b>	345	175	S &	# J	# 3.	æ 3:	æ 3.	<b>₹</b>
Vinyl, rigid	<u> </u>		34-55	မှ	21-34	0.5-20	0.7-27	150-175	8	8	99-09	130-175	55-80	<b>a</b>	, ec	S	<b>C</b>	. «	
Vinyl, Beatble	1.5 -2.1	I	7-28	:	:	0.5-20	0.7-27	140-175	99-99	:	:	:	:	s	æ	R-S	<b>≪</b>	<b>«</b>	<b>*</b>
Rigid CPVC	- 4	7.5-9.0	52-62	3.6-4.7	25-32	1.0-5.6	1.4-7.6	230	91	215-245	100-120	200-235	95-115	œ	æ	œ	Œ	Œ	<b>«</b>
PVC-acrylic	8 8 8	5.5-6.5	38-45	2.75-3.35	18-B	22	02	:	:	98	8	170	26	<b>ac</b>	Œ	s	Œ	Œ	<
PVC-ABS	3 = 5	2.6-6.0	18-4	0.8-3.4	8-9	10-15	14-20	:	:	:	:	:	:	s	æ	R-S	Œ	æ	R-D
SAN	8	10-12	<b>89</b>	5.0-5.6	34-39	0.4-0.5	0.5-0.7	0.5-0.7 140-200	60-95	:	:	190-220	90-108	SE	Œ	<	Œ	Œ	<

source: Plastes Engineering Handbook, 4th ed., Van Nostrand Reinhold, New York, 1976. Courtery of National Association of Corrosion Engineers. To convert megapasculs to pounds-force per square inch, multiply by 145.04.

*All values at room temperature unless otherwise listed.

*Note and amplea.

*Heat-deflection temperature.

*Ac = acid, and Al = alkali; R = resistant; A = attached; S = slight effects, E = embrittles, D = decomposes.

*By oudizing acids.

*Elabogenated solvers cause swelling.

*Phy furning sulfuric.

*By furning sulfuric.

*Dissolved by phenols and formic acid.

### APPENDIX G

Extract from <u>Marine Corrosion: Causes and Prevention</u> (c) J. Wiley and Sons, New York, 1975, pp. 302-305.

Table G. Properties of Coatings for Atmospheric Service

		Water	Acid	Alkali		Temperature		
	Physical properties	resistative	resistance	resistance	Solvent resistance	resistance	Weathering	Recogning
Allyd								
Shart out alkyd	Hard	Fair	Fair	Park	1	,		2
LANK AND AND AND AND AND AND AND AND AND AND	Pleathle	1	4	2				Ŷ.
Schrouse all vol	7		5 .	3		CHAKE	CARR	Easy
		3	3		Fall	Best of group	Very Kund	17.
Vinyl atkyal	i ough	Con	Best of group		Fuir	Fair	Very Bund	Difficult
Polyvinyl chiaride acetate	Transfe	Variable	C	G (1)	4 4 1. 1. 4. 1. 1. 1.		•	;
CHANNETS		1	CAUCING	EACCHOIN	(Authorite hydrocarbon, good,	FAIL, IDA'T	Very good	Easy
Vinyl acrolic sample mars	Trungh	,			MINISTER BY GENERALDER, DOM!		:	
	1900	רינאא	Very Kinns	very good	(Alphanc, good; aromatic,	Fair, 150°F	Excellent	Early
Chlorinated rubber					boot			
Resin-malibed	Hard	Very good	Very gond	Very good	(Alphatic, gond, aromatic,	Pair	Gand	Easy
All and months and	<del>1</del>			;	(MMK)			
	1300	Print)	177	- Lei	(Aliphatic, good, aromatic,	ř.	Very good	Easy
Will I					(hand)			
Poly office Landaulte	The state of the state of	3		2			;	
		¥ .	<u> </u>	Ē.	THE PARTY NAMED IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO		Very gened	Easy
ACTIVITY PARVITATION	With Townsel	Lax		Ž	Pixe	Fair	Excellent	- Arm
Elway	Tough	Cond	Gand	Con	Cond	Coor	P. ser	Difficult
Library								
F. Jana y account.	Hard	Gund	Girod	Cind	Very good	Very stead	Fair chalks	1) i Gionte
Ejmay polynoside	Tough	Very good	Fair	Excellent	Fair	Canal	Court of the fire	Different
Eparty conditor	Hard	Excellent	Cond	Gued	Poster	Cont	Paris	Difficult
Franceler	Flexible	Const	Puis	Posts	E. i.			LAINCHIM
Polymethane			i	3		2000	L-CKH; CHAIKS	Keasonable
Air-drying polymerthane varnish	Very tough	Fuir	Fair	Fair	Fair	Cinul	Vellimina	3
Two-meckage-reactive polyurethane	Tousels, hard	Gand	Fair	F. is	Clant	7		
				į		3	chalking	Macan
Modure-reactive palyurethane	Very tough, abrasion-	Fair	Fair	Fair	Gend	Con-l	Fades in light.	Difficult
Nunvellawing expenses	Waterly, board to south trees.	J	1	2	. ;	;	yelkiws in shade	
hwyganic zinc	rainy maid to ruccery		1	Tie .	Licked	Cen	Very good	Difficult
Water hase (sedimm or potassium	Tough, abrashmeresistant.	Good	Power	Passe	- A	E	1 1 1 2	2
silicate)	excellent chemical bond			i		FACCIICIN	unaffected by	r.asy
Organic Imac (ethy) silicate)	Tinigh, hard, excellent	Good	Poor	Poor	Girid	Excellent	weather Excellent	Emy
	DOWN							•

MINIME. F. 1. LuQue, Marine Corroston: Causes and Prevention, Wiley, New York, 1975, pp. 302-365. Courtery of National Association of Corrosion Engineers.

### APPENDIX H

Approximate Container Costs for Selected Container Materials

Approximate Unit Container Costs (representative order of 100,000 units)

5 GALLON 18.9 LITER		\$41.00	\$45.00	\$40.00		\$4.50	\$16.75		(2x 2-1/2 gallo.)	\$26.30 (5000 units/yr/head) (\$1200 /head)	(14 gailon)
DS2 CONTAINER SIZE 3.7 GALLON 14 LITER	STAINLESS STEEL	\$38.00 (3-gallon) Cylindrical Only	not available	\$35.00 (Cylindrical)	LINED-STEEL DRUMS	\$4.35 (cylindrical only)	not available	Polymers	not available	\$28.40 (\$2000 units/yr/head) (\$2000 /head)	not available
1-1/3 QUART 1.26 LITER		not available	not available	not available		not avallable	not available		\$0.339 (1 quart) \$0.458 (2 quart)	not available	not available
COMPANY		(closed head, "Visegrip" seal) (203) 877-3933	Packaging Specialties (216) 271-7988	200 240 240		Van Leer Containers (epoxy, phenolic, or epoxy-phenolic liner) (800) 323-3151	Packaging Specialties (216) 271-7988			(Rotationally molded cross-linked polyethylene & polyurethane, 0.160" thick)	co Plasti olyethyle unte nego 15) 838-7